// Copyright (c) 2011-present, Facebook, Inc. All rights reserved. // This source code is licensed under both the GPLv2 (found in the // COPYING file in the root directory) and Apache 2.0 License // (found in the LICENSE.Apache file in the root directory). // // Copyright (c) 2011 The LevelDB Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. See the AUTHORS file for names of contributors. #ifndef OS_WIN #include #endif #if defined(ROCKSDB_IOURING_PRESENT) #include #include #endif #include #include #include #include #include #ifdef OS_LINUX #include #include #include #include #include #endif #ifdef ROCKSDB_FALLOCATE_PRESENT #include #endif #include "db/db_impl/db_impl.h" #include "env/emulated_clock.h" #include "env/env_chroot.h" #include "env/env_encryption_ctr.h" #include "env/fs_readonly.h" #include "env/mock_env.h" #include "env/unique_id_gen.h" #include "logging/log_buffer.h" #include "logging/logging.h" #include "options/options_helper.h" #include "port/malloc.h" #include "port/port.h" #include "port/stack_trace.h" #include "rocksdb/convenience.h" #include "rocksdb/env.h" #include "rocksdb/env_encryption.h" #include "rocksdb/file_system.h" #include "rocksdb/system_clock.h" #include "rocksdb/utilities/object_registry.h" #include "test_util/mock_time_env.h" #include "test_util/sync_point.h" #include "test_util/testharness.h" #include "test_util/testutil.h" #include "util/coding.h" #include "util/crc32c.h" #include "util/mutexlock.h" #include "util/random.h" #include "util/string_util.h" #include "utilities/counted_fs.h" #include "utilities/env_timed.h" #include "utilities/fault_injection_env.h" #include "utilities/fault_injection_fs.h" namespace ROCKSDB_NAMESPACE { using port::kPageSize; static const int kDelayMicros = 100000; struct Deleter { explicit Deleter(void (*fn)(void*)) : fn_(fn) {} void operator()(void* ptr) { assert(fn_); assert(ptr); (*fn_)(ptr); } void (*fn_)(void*); }; extern "C" bool RocksDbIOUringEnable() { return true; } std::unique_ptr NewAligned(const size_t size, const char ch) { char* ptr = nullptr; #ifdef OS_WIN if (nullptr == (ptr = reinterpret_cast(_aligned_malloc(size, kPageSize)))) { return std::unique_ptr(nullptr, Deleter(_aligned_free)); } std::unique_ptr uptr(ptr, Deleter(_aligned_free)); #else if (posix_memalign(reinterpret_cast(&ptr), kPageSize, size) != 0) { return std::unique_ptr(nullptr, Deleter(free)); } std::unique_ptr uptr(ptr, Deleter(free)); #endif memset(uptr.get(), ch, size); return uptr; } class EnvPosixTest : public testing::Test { private: port::Mutex mu_; std::string events_; public: Env* env_; bool direct_io_; EnvPosixTest() : env_(Env::Default()), direct_io_(false) {} ~EnvPosixTest() { SyncPoint::GetInstance()->DisableProcessing(); SyncPoint::GetInstance()->LoadDependency({}); SyncPoint::GetInstance()->ClearAllCallBacks(); } }; class EnvPosixTestWithParam : public EnvPosixTest, public ::testing::WithParamInterface> { public: EnvPosixTestWithParam() { std::pair param_pair = GetParam(); env_ = param_pair.first; direct_io_ = param_pair.second; } void WaitThreadPoolsEmpty() { // Wait until the thread pools are empty. while (env_->GetThreadPoolQueueLen(Env::Priority::LOW) != 0) { Env::Default()->SleepForMicroseconds(kDelayMicros); } while (env_->GetThreadPoolQueueLen(Env::Priority::HIGH) != 0) { Env::Default()->SleepForMicroseconds(kDelayMicros); } } ~EnvPosixTestWithParam() override { WaitThreadPoolsEmpty(); } }; static void SetBool(void* ptr) { reinterpret_cast*>(ptr)->store(true); } TEST_F(EnvPosixTest, DISABLED_RunImmediately) { for (int pri = Env::BOTTOM; pri < Env::TOTAL; ++pri) { std::atomic called(false); env_->SetBackgroundThreads(1, static_cast(pri)); env_->Schedule(&SetBool, &called, static_cast(pri)); Env::Default()->SleepForMicroseconds(kDelayMicros); ASSERT_TRUE(called.load()); } } TEST_F(EnvPosixTest, RunEventually) { std::atomic called(false); env_->StartThread(&SetBool, &called); env_->WaitForJoin(); ASSERT_TRUE(called.load()); } #ifdef OS_WIN TEST_F(EnvPosixTest, AreFilesSame) { { bool tmp; if (env_->AreFilesSame("", "", &tmp).IsNotSupported()) { fprintf(stderr, "skipping EnvBasicTestWithParam.AreFilesSame due to " "unsupported Env::AreFilesSame\n"); return; } } const EnvOptions soptions; auto* env = Env::Default(); std::string same_file_name = test::PerThreadDBPath(env, "same_file"); std::string same_file_link_name = same_file_name + "_link"; std::unique_ptr same_file; ASSERT_OK(env->NewWritableFile(same_file_name, &same_file, soptions)); same_file->Append("random_data"); ASSERT_OK(same_file->Flush()); same_file.reset(); ASSERT_OK(env->LinkFile(same_file_name, same_file_link_name)); bool result = false; ASSERT_OK(env->AreFilesSame(same_file_name, same_file_link_name, &result)); ASSERT_TRUE(result); } #endif #ifdef OS_LINUX TEST_F(EnvPosixTest, DISABLED_FilePermission) { // Only works for Linux environment if (env_ == Env::Default()) { EnvOptions soptions; std::vector fileNames{ test::PerThreadDBPath(env_, "testfile"), test::PerThreadDBPath(env_, "testfile1")}; std::unique_ptr wfile; ASSERT_OK(env_->NewWritableFile(fileNames[0], &wfile, soptions)); ASSERT_OK(env_->NewWritableFile(fileNames[1], &wfile, soptions)); wfile.reset(); std::unique_ptr rwfile; ASSERT_OK(env_->NewRandomRWFile(fileNames[1], &rwfile, soptions)); struct stat sb; for (const auto& filename : fileNames) { if (::stat(filename.c_str(), &sb) == 0) { ASSERT_EQ(sb.st_mode & 0777, 0644); } ASSERT_OK(env_->DeleteFile(filename)); } env_->SetAllowNonOwnerAccess(false); ASSERT_OK(env_->NewWritableFile(fileNames[0], &wfile, soptions)); ASSERT_OK(env_->NewWritableFile(fileNames[1], &wfile, soptions)); wfile.reset(); ASSERT_OK(env_->NewRandomRWFile(fileNames[1], &rwfile, soptions)); for (const auto& filename : fileNames) { if (::stat(filename.c_str(), &sb) == 0) { ASSERT_EQ(sb.st_mode & 0777, 0600); } ASSERT_OK(env_->DeleteFile(filename)); } } } TEST_F(EnvPosixTest, LowerThreadPoolCpuPriority) { std::atomic from_priority(CpuPriority::kNormal); std::atomic to_priority(CpuPriority::kNormal); ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->SetCallBack( "ThreadPoolImpl::BGThread::BeforeSetCpuPriority", [&](void* pri) { from_priority.store(*static_cast(pri)); }); ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->SetCallBack( "ThreadPoolImpl::BGThread::AfterSetCpuPriority", [&](void* pri) { to_priority.store(*static_cast(pri)); }); ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->EnableProcessing(); env_->SetBackgroundThreads(1, Env::BOTTOM); env_->SetBackgroundThreads(1, Env::HIGH); auto RunTask = [&](Env::Priority pool) { std::atomic called(false); env_->Schedule(&SetBool, &called, pool); for (int i = 0; i < kDelayMicros; i++) { if (called.load()) { break; } Env::Default()->SleepForMicroseconds(1); } ASSERT_TRUE(called.load()); }; { // Same priority, no-op. env_->LowerThreadPoolCPUPriority(Env::Priority::BOTTOM, CpuPriority::kNormal) .PermitUncheckedError(); RunTask(Env::Priority::BOTTOM); ASSERT_EQ(from_priority, CpuPriority::kNormal); ASSERT_EQ(to_priority, CpuPriority::kNormal); } { // Higher priority, no-op. env_->LowerThreadPoolCPUPriority(Env::Priority::BOTTOM, CpuPriority::kHigh) .PermitUncheckedError(); RunTask(Env::Priority::BOTTOM); ASSERT_EQ(from_priority, CpuPriority::kNormal); ASSERT_EQ(to_priority, CpuPriority::kNormal); } { // Lower priority from kNormal -> kLow. env_->LowerThreadPoolCPUPriority(Env::Priority::BOTTOM, CpuPriority::kLow) .PermitUncheckedError(); RunTask(Env::Priority::BOTTOM); ASSERT_EQ(from_priority, CpuPriority::kNormal); ASSERT_EQ(to_priority, CpuPriority::kLow); } { // Lower priority from kLow -> kIdle. env_->LowerThreadPoolCPUPriority(Env::Priority::BOTTOM, CpuPriority::kIdle) .PermitUncheckedError(); RunTask(Env::Priority::BOTTOM); ASSERT_EQ(from_priority, CpuPriority::kLow); ASSERT_EQ(to_priority, CpuPriority::kIdle); } { // Lower priority from kNormal -> kIdle for another pool. env_->LowerThreadPoolCPUPriority(Env::Priority::HIGH, CpuPriority::kIdle) .PermitUncheckedError(); RunTask(Env::Priority::HIGH); ASSERT_EQ(from_priority, CpuPriority::kNormal); ASSERT_EQ(to_priority, CpuPriority::kIdle); } ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->DisableProcessing(); ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->ClearAllCallBacks(); } #endif TEST_F(EnvPosixTest, MemoryMappedFileBuffer) { const int kFileBytes = 1 << 15; // 32 KB std::string expected_data; std::string fname = test::PerThreadDBPath(env_, "testfile"); { std::unique_ptr wfile; const EnvOptions soptions; ASSERT_OK(env_->NewWritableFile(fname, &wfile, soptions)); Random rnd(301); expected_data = rnd.RandomString(kFileBytes); ASSERT_OK(wfile->Append(expected_data)); } std::unique_ptr mmap_buffer; Status status = env_->NewMemoryMappedFileBuffer(fname, &mmap_buffer); // it should be supported at least on linux #if !defined(OS_LINUX) if (status.IsNotSupported()) { fprintf(stderr, "skipping EnvPosixTest.MemoryMappedFileBuffer due to " "unsupported Env::NewMemoryMappedFileBuffer\n"); return; } #endif // !defined(OS_LINUX) ASSERT_OK(status); ASSERT_NE(nullptr, mmap_buffer.get()); ASSERT_NE(nullptr, mmap_buffer->GetBase()); ASSERT_EQ(kFileBytes, mmap_buffer->GetLen()); std::string actual_data(reinterpret_cast(mmap_buffer->GetBase()), mmap_buffer->GetLen()); ASSERT_EQ(expected_data, actual_data); } #ifndef ROCKSDB_NO_DYNAMIC_EXTENSION TEST_F(EnvPosixTest, LoadRocksDBLibrary) { std::shared_ptr library; std::function function; Status status = env_->LoadLibrary("no-such-library", "", &library); ASSERT_NOK(status); ASSERT_EQ(nullptr, library.get()); status = env_->LoadLibrary("rocksdb", "", &library); if (status.ok()) { // If we have can find a rocksdb shared library ASSERT_NE(nullptr, library.get()); ASSERT_OK(library->LoadFunction("rocksdb_create_default_env", &function)); // from C definition ASSERT_NE(nullptr, function); ASSERT_NOK(library->LoadFunction("no-such-method", &function)); ASSERT_EQ(nullptr, function); ASSERT_OK(env_->LoadLibrary(library->Name(), "", &library)); } else { ASSERT_EQ(nullptr, library.get()); } } #endif // !ROCKSDB_NO_DYNAMIC_EXTENSION #if !defined(OS_WIN) && !defined(ROCKSDB_NO_DYNAMIC_EXTENSION) TEST_F(EnvPosixTest, LoadRocksDBLibraryWithSearchPath) { std::shared_ptr library; std::function function; ASSERT_NOK(env_->LoadLibrary("no-such-library", "/tmp", &library)); ASSERT_EQ(nullptr, library.get()); ASSERT_NOK(env_->LoadLibrary("dl", "/tmp", &library)); ASSERT_EQ(nullptr, library.get()); Status status = env_->LoadLibrary("rocksdb", "/tmp:./", &library); if (status.ok()) { ASSERT_NE(nullptr, library.get()); ASSERT_OK(env_->LoadLibrary(library->Name(), "", &library)); } char buff[1024]; std::string cwd = getcwd(buff, sizeof(buff)); status = env_->LoadLibrary("rocksdb", "/tmp:" + cwd, &library); if (status.ok()) { ASSERT_NE(nullptr, library.get()); ASSERT_OK(env_->LoadLibrary(library->Name(), "", &library)); } } #endif // !OS_WIN && !ROCKSDB_NO_DYNAMIC_EXTENSION TEST_P(EnvPosixTestWithParam, UnSchedule) { std::atomic called(false); env_->SetBackgroundThreads(1, Env::LOW); /* Block the low priority queue */ test::SleepingBackgroundTask sleeping_task, sleeping_task1; env_->Schedule(&test::SleepingBackgroundTask::DoSleepTask, &sleeping_task, Env::Priority::LOW); /* Schedule another task */ env_->Schedule(&test::SleepingBackgroundTask::DoSleepTask, &sleeping_task1, Env::Priority::LOW, &sleeping_task1); /* Remove it with a different tag */ ASSERT_EQ(0, env_->UnSchedule(&called, Env::Priority::LOW)); /* Remove it from the queue with the right tag */ ASSERT_EQ(1, env_->UnSchedule(&sleeping_task1, Env::Priority::LOW)); // Unblock background thread sleeping_task.WakeUp(); /* Schedule another task */ env_->Schedule(&SetBool, &called); for (int i = 0; i < kDelayMicros; i++) { if (called.load()) { break; } Env::Default()->SleepForMicroseconds(1); } ASSERT_TRUE(called.load()); ASSERT_TRUE(!sleeping_task.IsSleeping() && !sleeping_task1.IsSleeping()); WaitThreadPoolsEmpty(); } // This tests assumes that the last scheduled // task will run last. In fact, in the allotted // sleeping time nothing may actually run or they may // run in any order. The purpose of the test is unclear. #ifndef OS_WIN TEST_P(EnvPosixTestWithParam, RunMany) { env_->SetBackgroundThreads(1, Env::LOW); std::atomic last_id(0); struct CB { std::atomic* last_id_ptr; // Pointer to shared slot int id; // Order# for the execution of this callback CB(std::atomic* p, int i) : last_id_ptr(p), id(i) {} static void Run(void* v) { CB* cb = static_cast(v); int cur = cb->last_id_ptr->load(); ASSERT_EQ(cb->id - 1, cur); cb->last_id_ptr->store(cb->id); } }; // Schedule in different order than start time CB cb1(&last_id, 1); CB cb2(&last_id, 2); CB cb3(&last_id, 3); CB cb4(&last_id, 4); env_->Schedule(&CB::Run, &cb1); env_->Schedule(&CB::Run, &cb2); env_->Schedule(&CB::Run, &cb3); env_->Schedule(&CB::Run, &cb4); // thread-pool pops a thread function and then run the function, which may // cause threadpool is empty but the last function is still running. Add a // dummy function at the end, to make sure the last callback is finished // before threadpool is empty. struct DummyCB { static void Run(void*) {} }; env_->Schedule(&DummyCB::Run, nullptr); WaitThreadPoolsEmpty(); ASSERT_EQ(4, last_id.load(std::memory_order_acquire)); } #endif struct State { port::Mutex mu; int val; int num_running; }; static void ThreadBody(void* arg) { State* s = static_cast(arg); s->mu.Lock(); s->val += 1; s->num_running -= 1; s->mu.Unlock(); } TEST_P(EnvPosixTestWithParam, StartThread) { State state; state.val = 0; state.num_running = 3; for (int i = 0; i < 3; i++) { env_->StartThread(&ThreadBody, &state); } while (true) { state.mu.Lock(); int num = state.num_running; state.mu.Unlock(); if (num == 0) { break; } Env::Default()->SleepForMicroseconds(kDelayMicros); } ASSERT_EQ(state.val, 3); WaitThreadPoolsEmpty(); } TEST_P(EnvPosixTestWithParam, TwoPools) { // Data structures to signal tasks to run. port::Mutex mutex; port::CondVar cv(&mutex); bool should_start = false; class CB { public: CB(const std::string& pool_name, int pool_size, port::Mutex* trigger_mu, port::CondVar* trigger_cv, bool* _should_start) : mu_(), num_running_(0), num_finished_(0), pool_size_(pool_size), pool_name_(pool_name), trigger_mu_(trigger_mu), trigger_cv_(trigger_cv), should_start_(_should_start) {} static void Run(void* v) { CB* cb = static_cast(v); cb->Run(); } void Run() { { MutexLock l(&mu_); num_running_++; // make sure we don't have more than pool_size_ jobs running. ASSERT_LE(num_running_, pool_size_.load()); } { MutexLock l(trigger_mu_); while (!(*should_start_)) { trigger_cv_->Wait(); } } { MutexLock l(&mu_); num_running_--; num_finished_++; } } int NumFinished() { MutexLock l(&mu_); return num_finished_; } void Reset(int pool_size) { pool_size_.store(pool_size); num_finished_ = 0; } private: port::Mutex mu_; int num_running_; int num_finished_; std::atomic pool_size_; std::string pool_name_; port::Mutex* trigger_mu_; port::CondVar* trigger_cv_; bool* should_start_; }; const int kLowPoolSize = 2; const int kHighPoolSize = 4; const int kJobs = 8; CB low_pool_job("low", kLowPoolSize, &mutex, &cv, &should_start); CB high_pool_job("high", kHighPoolSize, &mutex, &cv, &should_start); env_->SetBackgroundThreads(kLowPoolSize); env_->SetBackgroundThreads(kHighPoolSize, Env::Priority::HIGH); ASSERT_EQ(0U, env_->GetThreadPoolQueueLen(Env::Priority::LOW)); ASSERT_EQ(0U, env_->GetThreadPoolQueueLen(Env::Priority::HIGH)); // schedule same number of jobs in each pool for (int i = 0; i < kJobs; i++) { env_->Schedule(&CB::Run, &low_pool_job); env_->Schedule(&CB::Run, &high_pool_job, Env::Priority::HIGH); } // Wait a short while for the jobs to be dispatched. int sleep_count = 0; while ((unsigned int)(kJobs - kLowPoolSize) != env_->GetThreadPoolQueueLen(Env::Priority::LOW) || (unsigned int)(kJobs - kHighPoolSize) != env_->GetThreadPoolQueueLen(Env::Priority::HIGH)) { env_->SleepForMicroseconds(kDelayMicros); if (++sleep_count > 100) { break; } } ASSERT_EQ((unsigned int)(kJobs - kLowPoolSize), env_->GetThreadPoolQueueLen()); ASSERT_EQ((unsigned int)(kJobs - kLowPoolSize), env_->GetThreadPoolQueueLen(Env::Priority::LOW)); ASSERT_EQ((unsigned int)(kJobs - kHighPoolSize), env_->GetThreadPoolQueueLen(Env::Priority::HIGH)); // Trigger jobs to run. { MutexLock l(&mutex); should_start = true; cv.SignalAll(); } // wait for all jobs to finish while (low_pool_job.NumFinished() < kJobs || high_pool_job.NumFinished() < kJobs) { env_->SleepForMicroseconds(kDelayMicros); } ASSERT_EQ(0U, env_->GetThreadPoolQueueLen(Env::Priority::LOW)); ASSERT_EQ(0U, env_->GetThreadPoolQueueLen(Env::Priority::HIGH)); // Hold jobs to schedule; should_start = false; // call IncBackgroundThreadsIfNeeded to two pools. One increasing and // the other decreasing env_->IncBackgroundThreadsIfNeeded(kLowPoolSize - 1, Env::Priority::LOW); env_->IncBackgroundThreadsIfNeeded(kHighPoolSize + 1, Env::Priority::HIGH); high_pool_job.Reset(kHighPoolSize + 1); low_pool_job.Reset(kLowPoolSize); // schedule same number of jobs in each pool for (int i = 0; i < kJobs; i++) { env_->Schedule(&CB::Run, &low_pool_job); env_->Schedule(&CB::Run, &high_pool_job, Env::Priority::HIGH); } // Wait a short while for the jobs to be dispatched. sleep_count = 0; while ((unsigned int)(kJobs - kLowPoolSize) != env_->GetThreadPoolQueueLen(Env::Priority::LOW) || (unsigned int)(kJobs - (kHighPoolSize + 1)) != env_->GetThreadPoolQueueLen(Env::Priority::HIGH)) { env_->SleepForMicroseconds(kDelayMicros); if (++sleep_count > 100) { break; } } ASSERT_EQ((unsigned int)(kJobs - kLowPoolSize), env_->GetThreadPoolQueueLen()); ASSERT_EQ((unsigned int)(kJobs - kLowPoolSize), env_->GetThreadPoolQueueLen(Env::Priority::LOW)); ASSERT_EQ((unsigned int)(kJobs - (kHighPoolSize + 1)), env_->GetThreadPoolQueueLen(Env::Priority::HIGH)); // Trigger jobs to run. { MutexLock l(&mutex); should_start = true; cv.SignalAll(); } // wait for all jobs to finish while (low_pool_job.NumFinished() < kJobs || high_pool_job.NumFinished() < kJobs) { env_->SleepForMicroseconds(kDelayMicros); } env_->SetBackgroundThreads(kHighPoolSize, Env::Priority::HIGH); WaitThreadPoolsEmpty(); } TEST_P(EnvPosixTestWithParam, DecreaseNumBgThreads) { constexpr int kWaitMicros = 60000000; // 1min std::vector tasks(10); // Set number of thread to 1 first. env_->SetBackgroundThreads(1, Env::Priority::HIGH); // Schedule 3 tasks. 0 running; Task 1, 2 waiting. for (size_t i = 0; i < 3; i++) { env_->Schedule(&test::SleepingBackgroundTask::DoSleepTask, &tasks[i], Env::Priority::HIGH); } ASSERT_FALSE(tasks[0].TimedWaitUntilSleeping(kWaitMicros)); ASSERT_EQ(2U, env_->GetThreadPoolQueueLen(Env::Priority::HIGH)); ASSERT_TRUE(tasks[0].IsSleeping()); ASSERT_TRUE(!tasks[1].IsSleeping()); ASSERT_TRUE(!tasks[2].IsSleeping()); // Increase to 2 threads. Task 0, 1 running; 2 waiting env_->SetBackgroundThreads(2, Env::Priority::HIGH); ASSERT_FALSE(tasks[1].TimedWaitUntilSleeping(kWaitMicros)); ASSERT_EQ(1U, env_->GetThreadPoolQueueLen(Env::Priority::HIGH)); ASSERT_TRUE(tasks[0].IsSleeping()); ASSERT_TRUE(tasks[1].IsSleeping()); ASSERT_TRUE(!tasks[2].IsSleeping()); // Shrink back to 1 thread. Still task 0, 1 running, 2 waiting env_->SetBackgroundThreads(1, Env::Priority::HIGH); Env::Default()->SleepForMicroseconds(kDelayMicros); ASSERT_EQ(1U, env_->GetThreadPoolQueueLen(Env::Priority::HIGH)); ASSERT_TRUE(tasks[0].IsSleeping()); ASSERT_TRUE(tasks[1].IsSleeping()); ASSERT_TRUE(!tasks[2].IsSleeping()); // The last task finishes. Task 0 running, 2 waiting. tasks[1].WakeUp(); ASSERT_FALSE(tasks[1].TimedWaitUntilDone(kWaitMicros)); ASSERT_EQ(1U, env_->GetThreadPoolQueueLen(Env::Priority::HIGH)); ASSERT_TRUE(tasks[0].IsSleeping()); ASSERT_TRUE(!tasks[1].IsSleeping()); ASSERT_TRUE(!tasks[2].IsSleeping()); // Increase to 5 threads. Task 0 and 2 running. env_->SetBackgroundThreads(5, Env::Priority::HIGH); ASSERT_FALSE(tasks[2].TimedWaitUntilSleeping(kWaitMicros)); ASSERT_EQ(0U, env_->GetThreadPoolQueueLen(Env::Priority::HIGH)); ASSERT_TRUE(tasks[0].IsSleeping()); ASSERT_TRUE(!tasks[1].IsSleeping()); ASSERT_TRUE(tasks[2].IsSleeping()); // Change number of threads a couple of times while there is no sufficient // tasks. env_->SetBackgroundThreads(7, Env::Priority::HIGH); tasks[2].WakeUp(); ASSERT_FALSE(tasks[2].TimedWaitUntilDone(kWaitMicros)); ASSERT_EQ(0U, env_->GetThreadPoolQueueLen(Env::Priority::HIGH)); env_->SetBackgroundThreads(3, Env::Priority::HIGH); Env::Default()->SleepForMicroseconds(kDelayMicros); ASSERT_EQ(0U, env_->GetThreadPoolQueueLen(Env::Priority::HIGH)); env_->SetBackgroundThreads(4, Env::Priority::HIGH); Env::Default()->SleepForMicroseconds(kDelayMicros); ASSERT_EQ(0U, env_->GetThreadPoolQueueLen(Env::Priority::HIGH)); env_->SetBackgroundThreads(5, Env::Priority::HIGH); Env::Default()->SleepForMicroseconds(kDelayMicros); ASSERT_EQ(0U, env_->GetThreadPoolQueueLen(Env::Priority::HIGH)); env_->SetBackgroundThreads(4, Env::Priority::HIGH); Env::Default()->SleepForMicroseconds(kDelayMicros); ASSERT_EQ(0U, env_->GetThreadPoolQueueLen(Env::Priority::HIGH)); Env::Default()->SleepForMicroseconds(kDelayMicros * 50); // Enqueue 5 more tasks. Thread pool size now is 4. // Task 0, 3, 4, 5 running;6, 7 waiting. for (size_t i = 3; i < 8; i++) { env_->Schedule(&test::SleepingBackgroundTask::DoSleepTask, &tasks[i], Env::Priority::HIGH); } for (size_t i = 3; i <= 5; i++) { ASSERT_FALSE(tasks[i].TimedWaitUntilSleeping(kWaitMicros)); } ASSERT_EQ(2U, env_->GetThreadPoolQueueLen(Env::Priority::HIGH)); ASSERT_TRUE(tasks[0].IsSleeping()); ASSERT_TRUE(!tasks[1].IsSleeping()); ASSERT_TRUE(!tasks[2].IsSleeping()); ASSERT_TRUE(tasks[3].IsSleeping()); ASSERT_TRUE(tasks[4].IsSleeping()); ASSERT_TRUE(tasks[5].IsSleeping()); ASSERT_TRUE(!tasks[6].IsSleeping()); ASSERT_TRUE(!tasks[7].IsSleeping()); // Wake up task 0, 3 and 4. Task 5, 6, 7 running. tasks[0].WakeUp(); tasks[3].WakeUp(); tasks[4].WakeUp(); for (size_t i = 5; i < 8; i++) { ASSERT_FALSE(tasks[i].TimedWaitUntilSleeping(kWaitMicros)); } ASSERT_EQ(0U, env_->GetThreadPoolQueueLen(Env::Priority::HIGH)); for (size_t i = 5; i < 8; i++) { ASSERT_TRUE(tasks[i].IsSleeping()); } // Shrink back to 1 thread. Still task 5, 6, 7 running env_->SetBackgroundThreads(1, Env::Priority::HIGH); Env::Default()->SleepForMicroseconds(kDelayMicros); ASSERT_TRUE(tasks[5].IsSleeping()); ASSERT_TRUE(tasks[6].IsSleeping()); ASSERT_TRUE(tasks[7].IsSleeping()); // Wake up task 6. Task 5, 7 running tasks[6].WakeUp(); ASSERT_FALSE(tasks[6].TimedWaitUntilDone(kWaitMicros)); ASSERT_TRUE(tasks[5].IsSleeping()); ASSERT_TRUE(!tasks[6].IsSleeping()); ASSERT_TRUE(tasks[7].IsSleeping()); // Wake up threads 7. Task 5 running tasks[7].WakeUp(); ASSERT_FALSE(tasks[7].TimedWaitUntilDone(kWaitMicros)); ASSERT_TRUE(!tasks[7].IsSleeping()); // Enqueue thread 8 and 9. Task 5 running; one of 8, 9 might be running. env_->Schedule(&test::SleepingBackgroundTask::DoSleepTask, &tasks[8], Env::Priority::HIGH); env_->Schedule(&test::SleepingBackgroundTask::DoSleepTask, &tasks[9], Env::Priority::HIGH); Env::Default()->SleepForMicroseconds(kDelayMicros); ASSERT_GT(env_->GetThreadPoolQueueLen(Env::Priority::HIGH), (unsigned int)0); ASSERT_TRUE(!tasks[8].IsSleeping() || !tasks[9].IsSleeping()); // Increase to 4 threads. Task 5, 8, 9 running. env_->SetBackgroundThreads(4, Env::Priority::HIGH); Env::Default()->SleepForMicroseconds(kDelayMicros); ASSERT_EQ((unsigned int)0, env_->GetThreadPoolQueueLen(Env::Priority::HIGH)); ASSERT_TRUE(tasks[8].IsSleeping()); ASSERT_TRUE(tasks[9].IsSleeping()); // Shrink to 1 thread env_->SetBackgroundThreads(1, Env::Priority::HIGH); // Wake up thread 9. tasks[9].WakeUp(); ASSERT_FALSE(tasks[9].TimedWaitUntilDone(kWaitMicros)); ASSERT_TRUE(!tasks[9].IsSleeping()); ASSERT_TRUE(tasks[8].IsSleeping()); // Wake up thread 8 tasks[8].WakeUp(); ASSERT_FALSE(tasks[8].TimedWaitUntilDone(kWaitMicros)); ASSERT_TRUE(!tasks[8].IsSleeping()); // Wake up the last thread tasks[5].WakeUp(); ASSERT_FALSE(tasks[5].TimedWaitUntilDone(kWaitMicros)); WaitThreadPoolsEmpty(); } TEST_P(EnvPosixTestWithParam, ReserveThreads) { // Initialize the background thread to 1 in case other threads exist // from the last unit test env_->SetBackgroundThreads(1, Env::Priority::HIGH); ASSERT_EQ(env_->GetBackgroundThreads(Env::HIGH), 1); constexpr int kWaitMicros = 10000000; // 10seconds std::vector tasks(4); ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->EnableProcessing(); // Set the sync point to ensure thread 0 can terminate ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->LoadDependency( {{"ThreadPoolImpl::BGThread::Termination:th0", "EnvTest::ReserveThreads:0"}}); // Empty the thread pool to ensure all the threads can start later env_->SetBackgroundThreads(0, Env::Priority::HIGH); TEST_SYNC_POINT("EnvTest::ReserveThreads:0"); ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->DisableProcessing(); // Set the sync point to ensure threads start and pass the sync point ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->LoadDependency( {{"ThreadPoolImpl::BGThread::Start:th0", "EnvTest::ReserveThreads:1"}, {"ThreadPoolImpl::BGThread::Start:th1", "EnvTest::ReserveThreads:2"}, {"ThreadPoolImpl::BGThread::Start:th2", "EnvTest::ReserveThreads:3"}, {"ThreadPoolImpl::BGThread::Start:th3", "EnvTest::ReserveThreads:4"}}); ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->EnableProcessing(); // Set number of thread to 3 first. env_->SetBackgroundThreads(3, Env::Priority::HIGH); ASSERT_EQ(env_->GetBackgroundThreads(Env::HIGH), 3); // Add sync points to ensure all 3 threads start TEST_SYNC_POINT("EnvTest::ReserveThreads:1"); TEST_SYNC_POINT("EnvTest::ReserveThreads:2"); TEST_SYNC_POINT("EnvTest::ReserveThreads:3"); // Reserve 2 threads ASSERT_EQ(2, env_->ReserveThreads(2, Env::Priority::HIGH)); // Schedule 3 tasks. Task 0 running (in this context, doing // SleepingBackgroundTask); Task 1, 2 waiting; 3 reserved threads. for (size_t i = 0; i < 3; i++) { env_->Schedule(&test::SleepingBackgroundTask::DoSleepTask, &tasks[i], Env::Priority::HIGH); } ASSERT_FALSE(tasks[0].TimedWaitUntilSleeping(kWaitMicros)); ASSERT_EQ(2U, env_->GetThreadPoolQueueLen(Env::Priority::HIGH)); ASSERT_TRUE(tasks[0].IsSleeping()); ASSERT_TRUE(!tasks[1].IsSleeping()); ASSERT_TRUE(!tasks[2].IsSleeping()); // Release 2 threads. Task 0, 1, 2 running; 0 reserved thread. ASSERT_EQ(2, env_->ReleaseThreads(2, Env::Priority::HIGH)); ASSERT_FALSE(tasks[1].TimedWaitUntilSleeping(kWaitMicros)); ASSERT_FALSE(tasks[2].TimedWaitUntilSleeping(kWaitMicros)); ASSERT_EQ(0U, env_->GetThreadPoolQueueLen(Env::Priority::HIGH)); ASSERT_TRUE(tasks[1].IsSleeping()); ASSERT_TRUE(tasks[2].IsSleeping()); // No more threads can be reserved ASSERT_EQ(0, env_->ReserveThreads(3, Env::Priority::HIGH)); // Expand the number of background threads so that the last thread // is waiting env_->SetBackgroundThreads(4, Env::Priority::HIGH); // Add sync point to ensure the 4th thread starts TEST_SYNC_POINT("EnvTest::ReserveThreads:4"); // As the thread pool is expanded, we can reserve one more thread ASSERT_EQ(1, env_->ReserveThreads(3, Env::Priority::HIGH)); // No more threads can be reserved ASSERT_EQ(0, env_->ReserveThreads(3, Env::Priority::HIGH)); // Reset the sync points for the next iteration in BGThread or the // next time Submit() is called ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->DisableProcessing(); ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->LoadDependency( {{"ThreadPoolImpl::BGThread::WaitingThreadsInc", "EnvTest::ReserveThreads:5"}, {"ThreadPoolImpl::BGThread::Termination", "EnvTest::ReserveThreads:6"}, {"ThreadPoolImpl::Submit::Enqueue", "EnvTest::ReserveThreads:7"}}); ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->EnableProcessing(); tasks[0].WakeUp(); ASSERT_FALSE(tasks[0].TimedWaitUntilDone(kWaitMicros)); // Add sync point to ensure the number of waiting threads increases TEST_SYNC_POINT("EnvTest::ReserveThreads:5"); // 1 more thread can be reserved ASSERT_EQ(1, env_->ReserveThreads(3, Env::Priority::HIGH)); // 2 reserved threads now // Currently, two threads are blocked since the number of waiting // threads is equal to the number of reserved threads (i.e., 2). // If we reduce the number of background thread to 1, at least one thread // will be the last excessive thread (here we have no control over the // number of excessive threads because thread order does not // necessarily follows the schedule order, but we ensure that the last thread // shall not run any task by expanding the thread pool after we schedule // the tasks), and thus they(it) become(s) unblocked, the number of waiting // threads decreases to 0 or 1, but the number of reserved threads is still 2 env_->SetBackgroundThreads(1, Env::Priority::HIGH); // Task 1,2 running; 2 reserved threads, however, in fact, we only have // 0 or 1 waiting thread in the thread pool, proved by the // following test, we CANNOT reserve 2 threads even though we just // release 2 TEST_SYNC_POINT("EnvTest::ReserveThreads:6"); ASSERT_EQ(2, env_->ReleaseThreads(2, Env::Priority::HIGH)); ASSERT_GT(2, env_->ReserveThreads(2, Env::Priority::HIGH)); // Every new task will be put into the queue at this point env_->Schedule(&test::SleepingBackgroundTask::DoSleepTask, &tasks[3], Env::Priority::HIGH); TEST_SYNC_POINT("EnvTest::ReserveThreads:7"); ASSERT_EQ(1U, env_->GetThreadPoolQueueLen(Env::Priority::HIGH)); ASSERT_TRUE(!tasks[3].IsSleeping()); // Set the number of threads to 3 so that Task 3 can dequeue env_->SetBackgroundThreads(3, Env::Priority::HIGH); // Wakup Task 1 tasks[1].WakeUp(); ASSERT_FALSE(tasks[1].TimedWaitUntilDone(kWaitMicros)); // Task 2, 3 running (Task 3 dequeue); 0 or 1 reserved thread ASSERT_FALSE(tasks[3].TimedWaitUntilSleeping(kWaitMicros)); ASSERT_TRUE(tasks[3].IsSleeping()); ASSERT_EQ(0U, env_->GetThreadPoolQueueLen(Env::Priority::HIGH)); // At most 1 thread can be released ASSERT_GT(2, env_->ReleaseThreads(3, Env::Priority::HIGH)); tasks[2].WakeUp(); ASSERT_FALSE(tasks[2].TimedWaitUntilDone(kWaitMicros)); tasks[3].WakeUp(); ASSERT_FALSE(tasks[3].TimedWaitUntilDone(kWaitMicros)); WaitThreadPoolsEmpty(); ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->DisableProcessing(); } #if (defined OS_LINUX || defined OS_WIN) namespace { bool IsSingleVarint(const std::string& s) { Slice slice(s); uint64_t v; if (!GetVarint64(&slice, &v)) { return false; } return slice.size() == 0; } bool IsUniqueIDValid(const std::string& s) { return !s.empty() && !IsSingleVarint(s); } const size_t MAX_ID_SIZE = 100; char temp_id[MAX_ID_SIZE]; } // namespace // Determine whether we can use the FS_IOC_GETVERSION ioctl // on a file in directory DIR. Create a temporary file therein, // try to apply the ioctl (save that result), cleanup and // return the result. Return true if it is supported, and // false if anything fails. // Note that this function "knows" that dir has just been created // and is empty, so we create a simply-named test file: "f". bool ioctl_support__FS_IOC_GETVERSION(const std::string& dir) { #ifdef OS_WIN return true; #else const std::string file = dir + "/f"; int fd; do { fd = open(file.c_str(), O_CREAT | O_RDWR | O_TRUNC, 0644); } while (fd < 0 && errno == EINTR); long int version; bool ok = (fd >= 0 && ioctl(fd, FS_IOC_GETVERSION, &version) >= 0); close(fd); unlink(file.c_str()); return ok; #endif } // To ensure that Env::GetUniqueId-related tests work correctly, the files // should be stored in regular storage like "hard disk" or "flash device", // and not on a tmpfs file system (like /dev/shm and /tmp on some systems). // Otherwise we cannot get the correct id. // // This function serves as the replacement for test::TmpDir(), which may be // customized to be on a file system that doesn't work with GetUniqueId(). class IoctlFriendlyTmpdir { public: explicit IoctlFriendlyTmpdir() { char dir_buf[100]; const char* fmt = "%s/rocksdb.XXXXXX"; const char* tmp = getenv("TEST_IOCTL_FRIENDLY_TMPDIR"); #ifdef OS_WIN #define rmdir _rmdir if (tmp == nullptr) { tmp = getenv("TMP"); } snprintf(dir_buf, sizeof dir_buf, fmt, tmp); auto result = _mktemp(dir_buf); assert(result != nullptr); BOOL ret = CreateDirectory(dir_buf, NULL); assert(ret == TRUE); dir_ = dir_buf; #else std::list candidate_dir_list = {"/var/tmp", "/tmp"}; // If $TEST_IOCTL_FRIENDLY_TMPDIR/rocksdb.XXXXXX fits, use // $TEST_IOCTL_FRIENDLY_TMPDIR; subtract 2 for the "%s", and // add 1 for the trailing NUL byte. if (tmp && strlen(tmp) + strlen(fmt) - 2 + 1 <= sizeof dir_buf) { // use $TEST_IOCTL_FRIENDLY_TMPDIR value candidate_dir_list.push_front(tmp); } for (const std::string& d : candidate_dir_list) { snprintf(dir_buf, sizeof dir_buf, fmt, d.c_str()); if (mkdtemp(dir_buf)) { if (ioctl_support__FS_IOC_GETVERSION(dir_buf)) { dir_ = dir_buf; return; } else { // Diagnose ioctl-related failure only if this is the // directory specified via that envvar. if (tmp && tmp == d) { fprintf(stderr, "TEST_IOCTL_FRIENDLY_TMPDIR-specified directory is " "not suitable: %s\n", d.c_str()); } rmdir(dir_buf); // ignore failure } } else { // mkdtemp failed: diagnose it, but don't give up. fprintf(stderr, "mkdtemp(%s/...) failed: %s\n", d.c_str(), errnoStr(errno).c_str()); } } // check if it's running test within a docker container, in which case, the // file system inside `overlayfs` may not support FS_IOC_GETVERSION // skip the tests struct stat buffer; if (stat("/.dockerenv", &buffer) == 0) { is_supported_ = false; return; } fprintf(stderr, "failed to find an ioctl-friendly temporary directory;" " specify one via the TEST_IOCTL_FRIENDLY_TMPDIR envvar\n"); std::abort(); #endif } ~IoctlFriendlyTmpdir() { rmdir(dir_.c_str()); } const std::string& name() const { return dir_; } bool is_supported() const { return is_supported_; } private: std::string dir_; bool is_supported_ = true; }; TEST_F(EnvPosixTest, PositionedAppend) { std::unique_ptr writable_file; EnvOptions options; options.use_direct_writes = true; options.use_mmap_writes = false; std::string fname = test::PerThreadDBPath(env_, "positioned_append"); SetupSyncPointsToMockDirectIO(); ASSERT_OK(env_->NewWritableFile(fname, &writable_file, options)); const size_t kBlockSize = 4096; const size_t kDataSize = kPageSize; // Write a page worth of 'a' auto data_ptr = NewAligned(kDataSize, 'a'); Slice data_a(data_ptr.get(), kDataSize); ASSERT_OK(writable_file->PositionedAppend(data_a, 0U)); // Write a page worth of 'b' right after the first sector data_ptr = NewAligned(kDataSize, 'b'); Slice data_b(data_ptr.get(), kDataSize); ASSERT_OK(writable_file->PositionedAppend(data_b, kBlockSize)); ASSERT_OK(writable_file->Close()); // The file now has 1 sector worth of a followed by a page worth of b // Verify the above std::unique_ptr seq_file; ASSERT_OK(env_->NewSequentialFile(fname, &seq_file, options)); size_t scratch_len = kPageSize * 2; std::unique_ptr scratch(new char[scratch_len]); Slice result; ASSERT_OK(seq_file->Read(scratch_len, &result, scratch.get())); ASSERT_EQ(kPageSize + kBlockSize, result.size()); ASSERT_EQ('a', result[kBlockSize - 1]); ASSERT_EQ('b', result[kBlockSize]); } // `GetUniqueId()` temporarily returns zero on Windows. `BlockBasedTable` can // handle a return value of zero but this test case cannot. #ifndef OS_WIN TEST_P(EnvPosixTestWithParam, RandomAccessUniqueID) { // Create file. if (env_ == Env::Default()) { EnvOptions soptions; soptions.use_direct_reads = soptions.use_direct_writes = direct_io_; IoctlFriendlyTmpdir ift; if (!ift.is_supported()) { ROCKSDB_GTEST_BYPASS( "FS_IOC_GETVERSION is not supported by the filesystem"); return; } std::string fname = ift.name() + "/testfile"; std::unique_ptr wfile; ASSERT_OK(env_->NewWritableFile(fname, &wfile, soptions)); std::unique_ptr file; // Get Unique ID ASSERT_OK(env_->NewRandomAccessFile(fname, &file, soptions)); size_t id_size = file->GetUniqueId(temp_id, MAX_ID_SIZE); ASSERT_TRUE(id_size > 0); std::string unique_id1(temp_id, id_size); ASSERT_TRUE(IsUniqueIDValid(unique_id1)); // Get Unique ID again ASSERT_OK(env_->NewRandomAccessFile(fname, &file, soptions)); id_size = file->GetUniqueId(temp_id, MAX_ID_SIZE); ASSERT_TRUE(id_size > 0); std::string unique_id2(temp_id, id_size); ASSERT_TRUE(IsUniqueIDValid(unique_id2)); // Get Unique ID again after waiting some time. env_->SleepForMicroseconds(1000000); ASSERT_OK(env_->NewRandomAccessFile(fname, &file, soptions)); id_size = file->GetUniqueId(temp_id, MAX_ID_SIZE); ASSERT_TRUE(id_size > 0); std::string unique_id3(temp_id, id_size); ASSERT_TRUE(IsUniqueIDValid(unique_id3)); // Check IDs are the same. ASSERT_EQ(unique_id1, unique_id2); ASSERT_EQ(unique_id2, unique_id3); // Delete the file ASSERT_OK(env_->DeleteFile(fname)); } } #endif // !defined(OS_WIN) // only works in linux platforms #ifdef ROCKSDB_FALLOCATE_PRESENT TEST_P(EnvPosixTestWithParam, AllocateTest) { if (env_ == Env::Default()) { SetupSyncPointsToMockDirectIO(); std::string fname = test::PerThreadDBPath(env_, "preallocate_testfile"); // Try fallocate in a file to see whether the target file system supports // it. // Skip the test if fallocate is not supported. std::string fname_test_fallocate = test::PerThreadDBPath(env_, "preallocate_testfile_2"); int fd = -1; do { fd = open(fname_test_fallocate.c_str(), O_CREAT | O_RDWR | O_TRUNC, 0644); } while (fd < 0 && errno == EINTR); ASSERT_GT(fd, 0); int alloc_status = fallocate(fd, 0, 0, 1); int err_number = 0; if (alloc_status != 0) { err_number = errno; fprintf(stderr, "Warning: fallocate() fails, %s\n", errnoStr(err_number).c_str()); } close(fd); ASSERT_OK(env_->DeleteFile(fname_test_fallocate)); if (alloc_status != 0 && err_number == EOPNOTSUPP) { // The filesystem containing the file does not support fallocate return; } EnvOptions soptions; soptions.use_mmap_writes = false; soptions.use_direct_reads = soptions.use_direct_writes = direct_io_; std::unique_ptr wfile; ASSERT_OK(env_->NewWritableFile(fname, &wfile, soptions)); // allocate 100 MB size_t kPreallocateSize = 100 * 1024 * 1024; size_t kBlockSize = 512; size_t kDataSize = 1024 * 1024; auto data_ptr = NewAligned(kDataSize, 'A'); Slice data(data_ptr.get(), kDataSize); wfile->SetPreallocationBlockSize(kPreallocateSize); wfile->PrepareWrite(wfile->GetFileSize(), kDataSize); ASSERT_OK(wfile->Append(data)); ASSERT_OK(wfile->Flush()); struct stat f_stat; ASSERT_EQ(stat(fname.c_str(), &f_stat), 0); ASSERT_EQ((unsigned int)kDataSize, f_stat.st_size); // verify that blocks are preallocated // Note here that we don't check the exact number of blocks preallocated -- // we only require that number of allocated blocks is at least what we // expect. // It looks like some FS give us more blocks that we asked for. That's fine. // It might be worth investigating further. ASSERT_LE((unsigned int)(kPreallocateSize / kBlockSize), f_stat.st_blocks); // close the file, should deallocate the blocks wfile.reset(); stat(fname.c_str(), &f_stat); ASSERT_EQ((unsigned int)kDataSize, f_stat.st_size); // verify that preallocated blocks were deallocated on file close // Because the FS might give us more blocks, we add a full page to the size // and expect the number of blocks to be less or equal to that. ASSERT_GE((f_stat.st_size + kPageSize + kBlockSize - 1) / kBlockSize, (unsigned int)f_stat.st_blocks); } } #endif // ROCKSDB_FALLOCATE_PRESENT // Returns true if any of the strings in ss are the prefix of another string. bool HasPrefix(const std::unordered_set& ss) { for (const std::string& s : ss) { if (s.empty()) { return true; } for (size_t i = 1; i < s.size(); ++i) { if (ss.count(s.substr(0, i)) != 0) { return true; } } } return false; } // `GetUniqueId()` temporarily returns zero on Windows. `BlockBasedTable` can // handle a return value of zero but this test case cannot. #ifndef OS_WIN TEST_P(EnvPosixTestWithParam, RandomAccessUniqueIDConcurrent) { if (env_ == Env::Default()) { // Check whether a bunch of concurrently existing files have unique IDs. EnvOptions soptions; soptions.use_direct_reads = soptions.use_direct_writes = direct_io_; // Create the files IoctlFriendlyTmpdir ift; if (!ift.is_supported()) { ROCKSDB_GTEST_BYPASS( "FS_IOC_GETVERSION is not supported by the filesystem"); return; } std::vector fnames; for (int i = 0; i < 1000; ++i) { fnames.push_back(ift.name() + "/" + "testfile" + std::to_string(i)); // Create file. std::unique_ptr wfile; ASSERT_OK(env_->NewWritableFile(fnames[i], &wfile, soptions)); } // Collect and check whether the IDs are unique. std::unordered_set ids; for (const std::string& fname : fnames) { std::unique_ptr file; std::string unique_id; ASSERT_OK(env_->NewRandomAccessFile(fname, &file, soptions)); size_t id_size = file->GetUniqueId(temp_id, MAX_ID_SIZE); ASSERT_TRUE(id_size > 0); unique_id = std::string(temp_id, id_size); ASSERT_TRUE(IsUniqueIDValid(unique_id)); ASSERT_TRUE(ids.count(unique_id) == 0); ids.insert(unique_id); } // Delete the files for (const std::string& fname : fnames) { ASSERT_OK(env_->DeleteFile(fname)); } ASSERT_TRUE(!HasPrefix(ids)); } } // TODO: Disable the flaky test, it's a known issue that ext4 may return same // key after file deletion. The issue is tracked in #7405, #7470. TEST_P(EnvPosixTestWithParam, DISABLED_RandomAccessUniqueIDDeletes) { if (env_ == Env::Default()) { EnvOptions soptions; soptions.use_direct_reads = soptions.use_direct_writes = direct_io_; IoctlFriendlyTmpdir ift; if (!ift.is_supported()) { ROCKSDB_GTEST_BYPASS( "FS_IOC_GETVERSION is not supported by the filesystem"); return; } std::string fname = ift.name() + "/" + "testfile"; // Check that after file is deleted we don't get same ID again in a new // file. std::unordered_set ids; for (int i = 0; i < 1000; ++i) { // Create file. { std::unique_ptr wfile; ASSERT_OK(env_->NewWritableFile(fname, &wfile, soptions)); } // Get Unique ID std::string unique_id; { std::unique_ptr file; ASSERT_OK(env_->NewRandomAccessFile(fname, &file, soptions)); size_t id_size = file->GetUniqueId(temp_id, MAX_ID_SIZE); ASSERT_TRUE(id_size > 0); unique_id = std::string(temp_id, id_size); } ASSERT_TRUE(IsUniqueIDValid(unique_id)); ASSERT_TRUE(ids.count(unique_id) == 0); ids.insert(unique_id); // Delete the file ASSERT_OK(env_->DeleteFile(fname)); } ASSERT_TRUE(!HasPrefix(ids)); } } #endif // !defined(OS_WIN) TEST_P(EnvPosixTestWithParam, MultiRead) { EnvOptions soptions; soptions.use_direct_reads = soptions.use_direct_writes = direct_io_; std::string fname = test::PerThreadDBPath(env_, "testfile"); const size_t kSectorSize = 4096; const size_t kNumSectors = 8; // Create file. { std::unique_ptr wfile; #if !defined(OS_MACOSX) && !defined(OS_WIN) && !defined(OS_SOLARIS) && \ !defined(OS_AIX) if (soptions.use_direct_writes) { soptions.use_direct_writes = false; } #endif ASSERT_OK(env_->NewWritableFile(fname, &wfile, soptions)); for (size_t i = 0; i < kNumSectors; ++i) { auto data = NewAligned(kSectorSize * 8, static_cast(i + 1)); Slice slice(data.get(), kSectorSize); ASSERT_OK(wfile->Append(slice)); } ASSERT_OK(wfile->Close()); } // More attempts to simulate more partial result sequences. for (uint32_t attempt = 0; attempt < 20; attempt++) { // Random Read Random rnd(301 + attempt); ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->SetCallBack( "UpdateResults::io_uring_result", [&](void* arg) { if (attempt > 0) { // No failure in the first attempt. size_t& bytes_read = *static_cast(arg); if (rnd.OneIn(4)) { bytes_read = 0; } else if (rnd.OneIn(3)) { bytes_read = static_cast( rnd.Uniform(static_cast(bytes_read))); } } }); ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->EnableProcessing(); std::unique_ptr file; std::vector reqs(3); std::vector> data; uint64_t offset = 0; for (size_t i = 0; i < reqs.size(); ++i) { reqs[i].offset = offset; offset += 2 * kSectorSize; reqs[i].len = kSectorSize; data.emplace_back(NewAligned(kSectorSize, 0)); reqs[i].scratch = data.back().get(); } #if !defined(OS_MACOSX) && !defined(OS_WIN) && !defined(OS_SOLARIS) && \ !defined(OS_AIX) if (soptions.use_direct_reads) { soptions.use_direct_reads = false; } #endif ASSERT_OK(env_->NewRandomAccessFile(fname, &file, soptions)); ASSERT_OK(file->MultiRead(reqs.data(), reqs.size())); for (size_t i = 0; i < reqs.size(); ++i) { auto buf = NewAligned(kSectorSize * 8, static_cast(i * 2 + 1)); ASSERT_OK(reqs[i].status); ASSERT_EQ(memcmp(reqs[i].scratch, buf.get(), kSectorSize), 0); } ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->DisableProcessing(); } } TEST_F(EnvPosixTest, MultiReadNonAlignedLargeNum) { // In this test we don't do aligned read, so it doesn't work for // direct I/O case. EnvOptions soptions; soptions.use_direct_reads = soptions.use_direct_writes = false; std::string fname = test::PerThreadDBPath(env_, "testfile"); const size_t kTotalSize = 81920; Random rnd(301); std::string expected_data = rnd.RandomString(kTotalSize); // Create file. { std::unique_ptr wfile; ASSERT_OK(env_->NewWritableFile(fname, &wfile, soptions)); ASSERT_OK(wfile->Append(expected_data)); ASSERT_OK(wfile->Close()); } // More attempts to simulate more partial result sequences. for (uint32_t attempt = 0; attempt < 25; attempt++) { // Right now kIoUringDepth is hard coded as 256, so we need very large // number of keys to cover the case of multiple rounds of submissions. // Right now the test latency is still acceptable. If it ends up with // too long, we can modify the io uring depth with SyncPoint here. const int num_reads = rnd.Uniform(512) + 1; ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->SetCallBack( "UpdateResults::io_uring_result", [&](void* arg) { if (attempt > 5) { // Improve partial result rates in second half of the run to // cover the case of repeated partial results. int odd = (attempt < 15) ? num_reads / 2 : 4; // No failure in first several attempts. size_t& bytes_read = *static_cast(arg); if (rnd.OneIn(odd)) { bytes_read = 0; } else if (rnd.OneIn(odd / 2)) { bytes_read = static_cast( rnd.Uniform(static_cast(bytes_read))); } } }); ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->EnableProcessing(); // Generate (offset, len) pairs std::set start_offsets; for (int i = 0; i < num_reads; i++) { int rnd_off; // No repeat offsets. while (start_offsets.find(rnd_off = rnd.Uniform(81920)) != start_offsets.end()) { } start_offsets.insert(rnd_off); } std::vector offsets; std::vector lens; // std::set already sorted the offsets. for (int so : start_offsets) { offsets.push_back(so); } for (size_t i = 0; i + 1 < offsets.size(); i++) { lens.push_back(static_cast( rnd.Uniform(static_cast(offsets[i + 1] - offsets[i])) + 1)); } lens.push_back(static_cast( rnd.Uniform(static_cast(kTotalSize - offsets.back())) + 1)); ASSERT_EQ(num_reads, lens.size()); // Create requests std::vector scratches; scratches.reserve(num_reads); std::vector reqs(num_reads); for (size_t i = 0; i < reqs.size(); ++i) { reqs[i].offset = offsets[i]; reqs[i].len = lens[i]; scratches.emplace_back(reqs[i].len, ' '); reqs[i].scratch = const_cast(scratches.back().data()); } // Query the data std::unique_ptr file; ASSERT_OK(env_->NewRandomAccessFile(fname, &file, soptions)); ASSERT_OK(file->MultiRead(reqs.data(), reqs.size())); // Validate results for (int i = 0; i < num_reads; ++i) { ASSERT_OK(reqs[i].status); ASSERT_EQ( Slice(expected_data.data() + offsets[i], lens[i]).ToString(true), reqs[i].result.ToString(true)); } ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->DisableProcessing(); } } TEST_F(EnvPosixTest, NonAlignedDirectIOMultiReadBeyondFileSize) { EnvOptions soptions; soptions.use_direct_reads = true; soptions.use_direct_writes = false; std::string fname = test::PerThreadDBPath(env_, "testfile"); Random rnd(301); std::unique_ptr wfile; size_t alignment = 0; // Create file. { ASSERT_OK(env_->NewWritableFile(fname, &wfile, soptions)); auto data_ptr = NewAligned(4095, 'b'); Slice data_b(data_ptr.get(), 4095); ASSERT_OK(wfile->PositionedAppend(data_b, 0U)); ASSERT_OK(wfile->Close()); } #if !defined(OS_MACOSX) && !defined(OS_WIN) && !defined(OS_SOLARIS) && \ !defined(OS_AIX) && !defined(OS_OPENBSD) && !defined(OS_FREEBSD) if (soptions.use_direct_reads) { ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->SetCallBack( "NewRandomAccessFile:O_DIRECT", [&](void* arg) { int* val = static_cast(arg); *val &= ~O_DIRECT; }); } #endif ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->EnableProcessing(); const int num_reads = 2; // Create requests std::vector scratches; scratches.reserve(num_reads); std::vector reqs(num_reads); std::unique_ptr file; ASSERT_OK(env_->NewRandomAccessFile(fname, &file, soptions)); alignment = file->GetRequiredBufferAlignment(); ASSERT_EQ(num_reads, reqs.size()); std::vector> data; std::vector offsets = {0, 2047}; std::vector lens = {2047, 4096 - 2047}; for (size_t i = 0; i < num_reads; i++) { // Do alignment reqs[i].offset = static_cast(TruncateToPageBoundary( alignment, static_cast(/*offset=*/offsets[i]))); reqs[i].len = Roundup(static_cast(/*offset=*/offsets[i]) + /*length=*/lens[i], alignment) - reqs[i].offset; size_t new_capacity = Roundup(reqs[i].len, alignment); data.emplace_back(NewAligned(new_capacity, 0)); reqs[i].scratch = data.back().get(); } // Query the data ASSERT_OK(file->MultiRead(reqs.data(), reqs.size())); // Validate results for (size_t i = 0; i < num_reads; ++i) { ASSERT_OK(reqs[i].status); } ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->DisableProcessing(); } #if defined(ROCKSDB_IOURING_PRESENT) void GenerateFilesAndRequest(Env* env, const std::string& fname, std::vector* ret_reqs, std::vector* scratches) { const size_t kTotalSize = 81920; Random rnd(301); std::string expected_data = rnd.RandomString(kTotalSize); // Create file. { std::unique_ptr wfile; ASSERT_OK(env->NewWritableFile(fname, &wfile, EnvOptions())); ASSERT_OK(wfile->Append(expected_data)); ASSERT_OK(wfile->Close()); } // Right now kIoUringDepth is hard coded as 256, so we need very large // number of keys to cover the case of multiple rounds of submissions. // Right now the test latency is still acceptable. If it ends up with // too long, we can modify the io uring depth with SyncPoint here. const int num_reads = 3; std::vector offsets = {10000, 20000, 30000}; std::vector lens = {3000, 200, 100}; // Create requests scratches->reserve(num_reads); std::vector& reqs = *ret_reqs; reqs.resize(num_reads); for (int i = 0; i < num_reads; ++i) { reqs[i].offset = offsets[i]; reqs[i].len = lens[i]; scratches->emplace_back(reqs[i].len, ' '); reqs[i].scratch = const_cast(scratches->back().data()); } } TEST_F(EnvPosixTest, MultiReadIOUringError) { // In this test we don't do aligned read, so we can't do direct I/O. EnvOptions soptions; soptions.use_direct_reads = soptions.use_direct_writes = false; std::string fname = test::PerThreadDBPath(env_, "testfile"); std::vector scratches; std::vector reqs; GenerateFilesAndRequest(env_, fname, &reqs, &scratches); // Query the data std::unique_ptr file; ASSERT_OK(env_->NewRandomAccessFile(fname, &file, soptions)); bool io_uring_wait_cqe_called = false; SyncPoint::GetInstance()->SetCallBack( "PosixRandomAccessFile::MultiRead:io_uring_wait_cqe:return", [&](void* arg) { if (!io_uring_wait_cqe_called) { io_uring_wait_cqe_called = true; ssize_t& ret = *(static_cast(arg)); ret = 1; } }); SyncPoint::GetInstance()->EnableProcessing(); Status s = file->MultiRead(reqs.data(), reqs.size()); if (io_uring_wait_cqe_called) { ASSERT_NOK(s); } else { s.PermitUncheckedError(); } SyncPoint::GetInstance()->DisableProcessing(); SyncPoint::GetInstance()->ClearAllCallBacks(); } TEST_F(EnvPosixTest, MultiReadIOUringError2) { // In this test we don't do aligned read, so we can't do direct I/O. EnvOptions soptions; soptions.use_direct_reads = soptions.use_direct_writes = false; std::string fname = test::PerThreadDBPath(env_, "testfile"); std::vector scratches; std::vector reqs; GenerateFilesAndRequest(env_, fname, &reqs, &scratches); // Query the data std::unique_ptr file; ASSERT_OK(env_->NewRandomAccessFile(fname, &file, soptions)); bool io_uring_submit_and_wait_called = false; SyncPoint::GetInstance()->SetCallBack( "PosixRandomAccessFile::MultiRead:io_uring_submit_and_wait:return1", [&](void* arg) { io_uring_submit_and_wait_called = true; ssize_t* ret = static_cast(arg); (*ret)--; }); SyncPoint::GetInstance()->SetCallBack( "PosixRandomAccessFile::MultiRead:io_uring_submit_and_wait:return2", [&](void* arg) { struct io_uring* iu = static_cast(arg); struct io_uring_cqe* cqe; assert(io_uring_wait_cqe(iu, &cqe) == 0); io_uring_cqe_seen(iu, cqe); }); SyncPoint::GetInstance()->EnableProcessing(); Status s = file->MultiRead(reqs.data(), reqs.size()); if (io_uring_submit_and_wait_called) { ASSERT_NOK(s); } else { s.PermitUncheckedError(); } SyncPoint::GetInstance()->DisableProcessing(); SyncPoint::GetInstance()->ClearAllCallBacks(); } #endif // ROCKSDB_IOURING_PRESENT // Only works in linux platforms #ifdef OS_WIN TEST_P(EnvPosixTestWithParam, DISABLED_InvalidateCache) { #else TEST_P(EnvPosixTestWithParam, InvalidateCache) { #endif ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->EnableProcessing(); EnvOptions soptions; soptions.use_direct_reads = soptions.use_direct_writes = direct_io_; std::string fname = test::PerThreadDBPath(env_, "testfile"); const size_t kSectorSize = 512; auto data = NewAligned(kSectorSize, 0); Slice slice(data.get(), kSectorSize); // Create file. { std::unique_ptr wfile; #if !defined(OS_MACOSX) && !defined(OS_WIN) && !defined(OS_SOLARIS) && \ !defined(OS_AIX) if (soptions.use_direct_writes) { soptions.use_direct_writes = false; } #endif ASSERT_OK(env_->NewWritableFile(fname, &wfile, soptions)); ASSERT_OK(wfile->Append(slice)); ASSERT_OK(wfile->InvalidateCache(0, 0)); ASSERT_OK(wfile->Close()); } // Random Read { std::unique_ptr file; auto scratch = NewAligned(kSectorSize, 0); Slice result; #if !defined(OS_MACOSX) && !defined(OS_WIN) && !defined(OS_SOLARIS) && \ !defined(OS_AIX) if (soptions.use_direct_reads) { soptions.use_direct_reads = false; } #endif ASSERT_OK(env_->NewRandomAccessFile(fname, &file, soptions)); ASSERT_OK(file->Read(0, kSectorSize, &result, scratch.get())); ASSERT_EQ(memcmp(scratch.get(), data.get(), kSectorSize), 0); ASSERT_OK(file->InvalidateCache(0, 11)); ASSERT_OK(file->InvalidateCache(0, 0)); } // Sequential Read { std::unique_ptr file; auto scratch = NewAligned(kSectorSize, 0); Slice result; #if !defined(OS_MACOSX) && !defined(OS_WIN) && !defined(OS_SOLARIS) && \ !defined(OS_AIX) if (soptions.use_direct_reads) { soptions.use_direct_reads = false; } #endif ASSERT_OK(env_->NewSequentialFile(fname, &file, soptions)); if (file->use_direct_io()) { ASSERT_OK(file->PositionedRead(0, kSectorSize, &result, scratch.get())); } else { ASSERT_OK(file->Read(kSectorSize, &result, scratch.get())); } ASSERT_EQ(memcmp(scratch.get(), data.get(), kSectorSize), 0); ASSERT_OK(file->InvalidateCache(0, 11)); ASSERT_OK(file->InvalidateCache(0, 0)); } // Delete the file ASSERT_OK(env_->DeleteFile(fname)); ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->ClearTrace(); } #endif // OS_LINUX || OS_WIN class TestLogger : public Logger { public: using Logger::Logv; void Logv(const char* format, va_list ap) override { log_count++; char new_format[550]; std::fill_n(new_format, sizeof(new_format), '2'); { va_list backup_ap; va_copy(backup_ap, ap); int n = vsnprintf(new_format, sizeof(new_format) - 1, format, backup_ap); // 48 bytes for extra information + bytes allocated // When we have n == -1 there is not a terminating zero expected #ifdef OS_WIN if (n < 0) { char_0_count++; } #endif if (new_format[0] == '[') { // "[DEBUG] " ASSERT_TRUE(n <= 56 + (512 - static_cast(sizeof(port::TimeVal)))); } else { ASSERT_TRUE(n <= 48 + (512 - static_cast(sizeof(port::TimeVal)))); } va_end(backup_ap); } for (size_t i = 0; i < sizeof(new_format); i++) { if (new_format[i] == 'x') { char_x_count++; } else if (new_format[i] == '\0') { char_0_count++; } } } int log_count; int char_x_count; int char_0_count; }; TEST_P(EnvPosixTestWithParam, LogBufferTest) { TestLogger test_logger; test_logger.SetInfoLogLevel(InfoLogLevel::INFO_LEVEL); test_logger.log_count = 0; test_logger.char_x_count = 0; test_logger.char_0_count = 0; LogBuffer log_buffer(InfoLogLevel::INFO_LEVEL, &test_logger); LogBuffer log_buffer_debug(DEBUG_LEVEL, &test_logger); char bytes200[200]; std::fill_n(bytes200, sizeof(bytes200), '1'); bytes200[sizeof(bytes200) - 1] = '\0'; char bytes600[600]; std::fill_n(bytes600, sizeof(bytes600), '1'); bytes600[sizeof(bytes600) - 1] = '\0'; char bytes9000[9000]; std::fill_n(bytes9000, sizeof(bytes9000), '1'); bytes9000[sizeof(bytes9000) - 1] = '\0'; ROCKS_LOG_BUFFER(&log_buffer, "x%sx", bytes200); ROCKS_LOG_BUFFER(&log_buffer, "x%sx", bytes600); ROCKS_LOG_BUFFER(&log_buffer, "x%sx%sx%sx", bytes200, bytes200, bytes200); ROCKS_LOG_BUFFER(&log_buffer, "x%sx%sx", bytes200, bytes600); ROCKS_LOG_BUFFER(&log_buffer, "x%sx%sx", bytes600, bytes9000); ROCKS_LOG_BUFFER(&log_buffer_debug, "x%sx", bytes200); test_logger.SetInfoLogLevel(DEBUG_LEVEL); ROCKS_LOG_BUFFER(&log_buffer_debug, "x%sx%sx%sx", bytes600, bytes9000, bytes200); ASSERT_EQ(0, test_logger.log_count); log_buffer.FlushBufferToLog(); log_buffer_debug.FlushBufferToLog(); ASSERT_EQ(6, test_logger.log_count); ASSERT_EQ(6, test_logger.char_0_count); ASSERT_EQ(10, test_logger.char_x_count); } class TestLogger2 : public Logger { public: explicit TestLogger2(size_t max_log_size) : max_log_size_(max_log_size) {} using Logger::Logv; void Logv(const char* format, va_list ap) override { char new_format[2000]; std::fill_n(new_format, sizeof(new_format), '2'); { va_list backup_ap; va_copy(backup_ap, ap); int n = vsnprintf(new_format, sizeof(new_format) - 1, format, backup_ap); // 48 bytes for extra information + bytes allocated ASSERT_TRUE(n <= 48 + static_cast(max_log_size_ - sizeof(port::TimeVal))); ASSERT_TRUE(n > static_cast(max_log_size_ - sizeof(port::TimeVal))); va_end(backup_ap); } } size_t max_log_size_; }; TEST_P(EnvPosixTestWithParam, LogBufferMaxSizeTest) { char bytes9000[9000]; std::fill_n(bytes9000, sizeof(bytes9000), '1'); bytes9000[sizeof(bytes9000) - 1] = '\0'; for (size_t max_log_size = 256; max_log_size <= 1024; max_log_size += 1024 - 256) { TestLogger2 test_logger(max_log_size); test_logger.SetInfoLogLevel(InfoLogLevel::INFO_LEVEL); LogBuffer log_buffer(InfoLogLevel::INFO_LEVEL, &test_logger); ROCKS_LOG_BUFFER_MAX_SZ(&log_buffer, max_log_size, "%s", bytes9000); log_buffer.FlushBufferToLog(); } } TEST_P(EnvPosixTestWithParam, Preallocation) { ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->EnableProcessing(); const std::string src = test::PerThreadDBPath(env_, "testfile"); std::unique_ptr srcfile; EnvOptions soptions; soptions.use_direct_reads = soptions.use_direct_writes = direct_io_; #if !defined(OS_MACOSX) && !defined(OS_WIN) && !defined(OS_SOLARIS) && \ !defined(OS_AIX) && !defined(OS_OPENBSD) && !defined(OS_FREEBSD) if (soptions.use_direct_writes) { ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->SetCallBack( "NewWritableFile:O_DIRECT", [&](void* arg) { int* val = static_cast(arg); *val &= ~O_DIRECT; }); } #endif ASSERT_OK(env_->NewWritableFile(src, &srcfile, soptions)); srcfile->SetPreallocationBlockSize(1024 * 1024); // No writes should mean no preallocation size_t block_size, last_allocated_block; srcfile->GetPreallocationStatus(&block_size, &last_allocated_block); ASSERT_EQ(last_allocated_block, 0UL); // Small write should preallocate one block size_t kStrSize = 4096; auto data = NewAligned(kStrSize, 'A'); Slice str(data.get(), kStrSize); srcfile->PrepareWrite(srcfile->GetFileSize(), kStrSize); ASSERT_OK(srcfile->Append(str)); srcfile->GetPreallocationStatus(&block_size, &last_allocated_block); ASSERT_EQ(last_allocated_block, 1UL); // Write an entire preallocation block, make sure we increased by two. { auto buf_ptr = NewAligned(block_size, ' '); Slice buf(buf_ptr.get(), block_size); srcfile->PrepareWrite(srcfile->GetFileSize(), block_size); ASSERT_OK(srcfile->Append(buf)); srcfile->GetPreallocationStatus(&block_size, &last_allocated_block); ASSERT_EQ(last_allocated_block, 2UL); } // Write five more blocks at once, ensure we're where we need to be. { auto buf_ptr = NewAligned(block_size * 5, ' '); Slice buf = Slice(buf_ptr.get(), block_size * 5); srcfile->PrepareWrite(srcfile->GetFileSize(), buf.size()); ASSERT_OK(srcfile->Append(buf)); srcfile->GetPreallocationStatus(&block_size, &last_allocated_block); ASSERT_EQ(last_allocated_block, 7UL); } ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->ClearTrace(); } // Test that the two ways to get children file attributes (in bulk or // individually) behave consistently. TEST_P(EnvPosixTestWithParam, ConsistentChildrenAttributes) { ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->EnableProcessing(); EnvOptions soptions; soptions.use_direct_reads = soptions.use_direct_writes = direct_io_; const int kNumChildren = 10; std::string data; std::string test_base_dir = test::PerThreadDBPath(env_, "env_test_chr_attr"); env_->CreateDir(test_base_dir).PermitUncheckedError(); for (int i = 0; i < kNumChildren; ++i) { const std::string path = test_base_dir + "/testfile_" + std::to_string(i); std::unique_ptr file; #if !defined(OS_MACOSX) && !defined(OS_WIN) && !defined(OS_SOLARIS) && \ !defined(OS_AIX) && !defined(OS_OPENBSD) && !defined(OS_FREEBSD) if (soptions.use_direct_writes) { ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->SetCallBack( "NewWritableFile:O_DIRECT", [&](void* arg) { int* val = static_cast(arg); *val &= ~O_DIRECT; }); } #endif ASSERT_OK(env_->NewWritableFile(path, &file, soptions)); auto buf_ptr = NewAligned(data.size(), 'T'); Slice buf(buf_ptr.get(), data.size()); ASSERT_OK(file->Append(buf)); data.append(std::string(4096, 'T')); } std::vector file_attrs; ASSERT_OK(env_->GetChildrenFileAttributes(test_base_dir, &file_attrs)); for (int i = 0; i < kNumChildren; ++i) { const std::string name = "testfile_" + std::to_string(i); const std::string path = test_base_dir + "/" + name; auto file_attrs_iter = std::find_if( file_attrs.begin(), file_attrs.end(), [&name](const Env::FileAttributes& fm) { return fm.name == name; }); ASSERT_TRUE(file_attrs_iter != file_attrs.end()); uint64_t size; ASSERT_OK(env_->GetFileSize(path, &size)); ASSERT_EQ(size, 4096 * i); ASSERT_EQ(size, file_attrs_iter->size_bytes); } ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->ClearTrace(); } // Test that all WritableFileWrapper forwards all calls to WritableFile. TEST_P(EnvPosixTestWithParam, WritableFileWrapper) { class Base : public WritableFile { public: mutable int* step_; void inc(int x) const { EXPECT_EQ(x, (*step_)++); } explicit Base(int* step) : step_(step) { inc(0); } Status Append(const Slice& /*data*/) override { inc(1); return Status::OK(); } Status Append( const Slice& /*data*/, const DataVerificationInfo& /* verification_info */) override { inc(1); return Status::OK(); } Status PositionedAppend(const Slice& /*data*/, uint64_t /*offset*/) override { inc(2); return Status::OK(); } Status PositionedAppend( const Slice& /*data*/, uint64_t /*offset*/, const DataVerificationInfo& /* verification_info */) override { inc(2); return Status::OK(); } Status Truncate(uint64_t /*size*/) override { inc(3); return Status::OK(); } Status Close() override { inc(4); return Status::OK(); } Status Flush() override { inc(5); return Status::OK(); } Status Sync() override { inc(6); return Status::OK(); } Status Fsync() override { inc(7); return Status::OK(); } bool IsSyncThreadSafe() const override { inc(8); return true; } bool use_direct_io() const override { inc(9); return true; } size_t GetRequiredBufferAlignment() const override { inc(10); return 0; } void SetIOPriority(Env::IOPriority /*pri*/) override { inc(11); } Env::IOPriority GetIOPriority() override { inc(12); return Env::IOPriority::IO_LOW; } void SetWriteLifeTimeHint(Env::WriteLifeTimeHint /*hint*/) override { inc(13); } Env::WriteLifeTimeHint GetWriteLifeTimeHint() override { inc(14); return Env::WriteLifeTimeHint::WLTH_NOT_SET; } uint64_t GetFileSize() override { inc(15); return 0; } void SetPreallocationBlockSize(size_t /*size*/) override { inc(16); } void GetPreallocationStatus(size_t* /*block_size*/, size_t* /*last_allocated_block*/) override { inc(17); } size_t GetUniqueId(char* /*id*/, size_t /*max_size*/) const override { inc(18); return 0; } Status InvalidateCache(size_t /*offset*/, size_t /*length*/) override { inc(19); return Status::OK(); } Status RangeSync(uint64_t /*offset*/, uint64_t /*nbytes*/) override { inc(20); return Status::OK(); } void PrepareWrite(size_t /*offset*/, size_t /*len*/) override { inc(21); } Status Allocate(uint64_t /*offset*/, uint64_t /*len*/) override { inc(22); return Status::OK(); } public: ~Base() override { inc(23); } }; class Wrapper : public WritableFileWrapper { public: explicit Wrapper(WritableFile* target) : WritableFileWrapper(target) {} }; int step = 0; { Base b(&step); Wrapper w(&b); ASSERT_OK(w.Append(Slice())); ASSERT_OK(w.PositionedAppend(Slice(), 0)); ASSERT_OK(w.Truncate(0)); ASSERT_OK(w.Close()); ASSERT_OK(w.Flush()); ASSERT_OK(w.Sync()); ASSERT_OK(w.Fsync()); w.IsSyncThreadSafe(); w.use_direct_io(); w.GetRequiredBufferAlignment(); w.SetIOPriority(Env::IOPriority::IO_HIGH); w.GetIOPriority(); w.SetWriteLifeTimeHint(Env::WriteLifeTimeHint::WLTH_NOT_SET); w.GetWriteLifeTimeHint(); w.GetFileSize(); w.SetPreallocationBlockSize(0); w.GetPreallocationStatus(nullptr, nullptr); w.GetUniqueId(nullptr, 0); ASSERT_OK(w.InvalidateCache(0, 0)); ASSERT_OK(w.RangeSync(0, 0)); w.PrepareWrite(0, 0); ASSERT_OK(w.Allocate(0, 0)); } EXPECT_EQ(24, step); } TEST_P(EnvPosixTestWithParam, PosixRandomRWFile) { const std::string path = test::PerThreadDBPath(env_, "random_rw_file"); env_->DeleteFile(path).PermitUncheckedError(); std::unique_ptr file; // Cannot open non-existing file. ASSERT_NOK(env_->NewRandomRWFile(path, &file, EnvOptions())); // Create the file using WritableFile { std::unique_ptr wf; ASSERT_OK(env_->NewWritableFile(path, &wf, EnvOptions())); } ASSERT_OK(env_->NewRandomRWFile(path, &file, EnvOptions())); char buf[10000]; Slice read_res; ASSERT_OK(file->Write(0, "ABCD")); ASSERT_OK(file->Read(0, 10, &read_res, buf)); ASSERT_EQ(read_res.ToString(), "ABCD"); ASSERT_OK(file->Write(2, "XXXX")); ASSERT_OK(file->Read(0, 10, &read_res, buf)); ASSERT_EQ(read_res.ToString(), "ABXXXX"); ASSERT_OK(file->Write(10, "ZZZ")); ASSERT_OK(file->Read(10, 10, &read_res, buf)); ASSERT_EQ(read_res.ToString(), "ZZZ"); ASSERT_OK(file->Write(11, "Y")); ASSERT_OK(file->Read(10, 10, &read_res, buf)); ASSERT_EQ(read_res.ToString(), "ZYZ"); ASSERT_OK(file->Write(200, "FFFFF")); ASSERT_OK(file->Read(200, 10, &read_res, buf)); ASSERT_EQ(read_res.ToString(), "FFFFF"); ASSERT_OK(file->Write(205, "XXXX")); ASSERT_OK(file->Read(200, 10, &read_res, buf)); ASSERT_EQ(read_res.ToString(), "FFFFFXXXX"); ASSERT_OK(file->Write(5, "QQQQ")); ASSERT_OK(file->Read(0, 9, &read_res, buf)); ASSERT_EQ(read_res.ToString(), "ABXXXQQQQ"); ASSERT_OK(file->Read(2, 4, &read_res, buf)); ASSERT_EQ(read_res.ToString(), "XXXQ"); // Close file and reopen it ASSERT_OK(file->Close()); ASSERT_OK(env_->NewRandomRWFile(path, &file, EnvOptions())); ASSERT_OK(file->Read(0, 9, &read_res, buf)); ASSERT_EQ(read_res.ToString(), "ABXXXQQQQ"); ASSERT_OK(file->Read(10, 3, &read_res, buf)); ASSERT_EQ(read_res.ToString(), "ZYZ"); ASSERT_OK(file->Read(200, 9, &read_res, buf)); ASSERT_EQ(read_res.ToString(), "FFFFFXXXX"); ASSERT_OK(file->Write(4, "TTTTTTTTTTTTTTTT")); ASSERT_OK(file->Read(0, 10, &read_res, buf)); ASSERT_EQ(read_res.ToString(), "ABXXTTTTTT"); // Clean up ASSERT_OK(env_->DeleteFile(path)); } class RandomRWFileWithMirrorString { public: explicit RandomRWFileWithMirrorString(RandomRWFile* _file) : file_(_file) {} void Write(size_t offset, const std::string& data) { // Write to mirror string StringWrite(offset, data); // Write to file Status s = file_->Write(offset, data); ASSERT_OK(s) << s.ToString(); } void Read(size_t offset = 0, size_t n = 1000000) { Slice str_res(nullptr, 0); if (offset < file_mirror_.size()) { size_t str_res_sz = std::min(file_mirror_.size() - offset, n); str_res = Slice(file_mirror_.data() + offset, str_res_sz); StopSliceAtNull(&str_res); } Slice file_res; Status s = file_->Read(offset, n, &file_res, buf_); ASSERT_OK(s) << s.ToString(); StopSliceAtNull(&file_res); ASSERT_EQ(str_res.ToString(), file_res.ToString()) << offset << " " << n; } void SetFile(RandomRWFile* _file) { file_ = _file; } private: void StringWrite(size_t offset, const std::string& src) { if (offset + src.size() > file_mirror_.size()) { file_mirror_.resize(offset + src.size(), '\0'); } char* pos = const_cast(file_mirror_.data() + offset); memcpy(pos, src.data(), src.size()); } void StopSliceAtNull(Slice* slc) { for (size_t i = 0; i < slc->size(); i++) { if ((*slc)[i] == '\0') { *slc = Slice(slc->data(), i); break; } } } char buf_[10000]; RandomRWFile* file_; std::string file_mirror_; }; TEST_P(EnvPosixTestWithParam, PosixRandomRWFileRandomized) { const std::string path = test::PerThreadDBPath(env_, "random_rw_file_rand"); env_->DeleteFile(path).PermitUncheckedError(); std::unique_ptr file; #ifdef OS_LINUX // Cannot open non-existing file. ASSERT_NOK(env_->NewRandomRWFile(path, &file, EnvOptions())); #endif // Create the file using WritableFile { std::unique_ptr wf; ASSERT_OK(env_->NewWritableFile(path, &wf, EnvOptions())); } ASSERT_OK(env_->NewRandomRWFile(path, &file, EnvOptions())); RandomRWFileWithMirrorString file_with_mirror(file.get()); Random rnd(301); std::string buf; for (int i = 0; i < 10000; i++) { // Genrate random data buf = rnd.RandomString(10); // Pick random offset for write size_t write_off = rnd.Next() % 1000; file_with_mirror.Write(write_off, buf); // Pick random offset for read size_t read_off = rnd.Next() % 1000; size_t read_sz = rnd.Next() % 20; file_with_mirror.Read(read_off, read_sz); if (i % 500 == 0) { // Reopen the file every 500 iters ASSERT_OK(env_->NewRandomRWFile(path, &file, EnvOptions())); file_with_mirror.SetFile(file.get()); } } // clean up ASSERT_OK(env_->DeleteFile(path)); } class TestEnv : public EnvWrapper { public: explicit TestEnv() : EnvWrapper(Env::Default()), close_count(0) {} const char* Name() const override { return "TestEnv"; } class TestLogger : public Logger { public: using Logger::Logv; explicit TestLogger(TestEnv* env_ptr) : Logger() { env = env_ptr; } ~TestLogger() override { if (!closed_) { Status s = CloseHelper(); s.PermitUncheckedError(); } } void Logv(const char* /*format*/, va_list /*ap*/) override {} protected: Status CloseImpl() override { return CloseHelper(); } private: Status CloseHelper() { env->CloseCountInc(); return Status::OK(); } TestEnv* env; }; void CloseCountInc() { close_count++; } int GetCloseCount() { return close_count; } Status NewLogger(const std::string& /*fname*/, std::shared_ptr* result) override { result->reset(new TestLogger(this)); return Status::OK(); } private: int close_count; }; class EnvTest : public testing::Test { public: EnvTest() : test_directory_(test::PerThreadDBPath("env_test")) {} protected: const std::string test_directory_; }; TEST_F(EnvTest, Close) { TestEnv* env = new TestEnv(); std::shared_ptr logger; Status s; s = env->NewLogger("", &logger); ASSERT_OK(s); ASSERT_OK(logger.get()->Close()); ASSERT_EQ(env->GetCloseCount(), 1); // Call Close() again. CloseHelper() should not be called again ASSERT_OK(logger.get()->Close()); ASSERT_EQ(env->GetCloseCount(), 1); logger.reset(); ASSERT_EQ(env->GetCloseCount(), 1); s = env->NewLogger("", &logger); ASSERT_OK(s); logger.reset(); ASSERT_EQ(env->GetCloseCount(), 2); delete env; } class LogvWithInfoLogLevelLogger : public Logger { public: using Logger::Logv; void Logv(const InfoLogLevel /* log_level */, const char* /* format */, va_list /* ap */) override {} }; TEST_F(EnvTest, LogvWithInfoLogLevel) { // Verifies the log functions work on a `Logger` that only overrides the // `Logv()` overload including `InfoLogLevel`. const std::string kSampleMessage("sample log message"); LogvWithInfoLogLevelLogger logger; ROCKS_LOG_HEADER(&logger, "%s", kSampleMessage.c_str()); ROCKS_LOG_DEBUG(&logger, "%s", kSampleMessage.c_str()); ROCKS_LOG_INFO(&logger, "%s", kSampleMessage.c_str()); ROCKS_LOG_WARN(&logger, "%s", kSampleMessage.c_str()); ROCKS_LOG_ERROR(&logger, "%s", kSampleMessage.c_str()); ROCKS_LOG_FATAL(&logger, "%s", kSampleMessage.c_str()); } INSTANTIATE_TEST_CASE_P(DefaultEnvWithoutDirectIO, EnvPosixTestWithParam, ::testing::Values(std::pair(Env::Default(), false))); INSTANTIATE_TEST_CASE_P(DefaultEnvWithDirectIO, EnvPosixTestWithParam, ::testing::Values(std::pair(Env::Default(), true))); #if !defined(OS_WIN) static Env* GetChrootEnv() { static std::unique_ptr chroot_env( NewChrootEnv(Env::Default(), test::TmpDir(Env::Default()))); return chroot_env.get(); } INSTANTIATE_TEST_CASE_P(ChrootEnvWithoutDirectIO, EnvPosixTestWithParam, ::testing::Values(std::pair(GetChrootEnv(), false))); INSTANTIATE_TEST_CASE_P(ChrootEnvWithDirectIO, EnvPosixTestWithParam, ::testing::Values(std::pair(GetChrootEnv(), true))); #endif // !defined(OS_WIN) class EnvFSTestWithParam : public ::testing::Test, public ::testing::WithParamInterface> { public: EnvFSTestWithParam() { bool env_non_null = std::get<0>(GetParam()); bool env_default = std::get<1>(GetParam()); bool fs_default = std::get<2>(GetParam()); env_ = env_non_null ? (env_default ? Env::Default() : nullptr) : nullptr; fs_ = fs_default ? FileSystem::Default() : std::make_shared(FileSystem::Default()); if (env_non_null && env_default && !fs_default) { env_ptr_ = NewCompositeEnv(fs_); } if (env_non_null && !env_default && fs_default) { env_ptr_ = std::unique_ptr(new FaultInjectionTestEnv(Env::Default())); fs_.reset(); } if (env_non_null && !env_default && !fs_default) { env_ptr_.reset(new FaultInjectionTestEnv(Env::Default())); composite_env_ptr_.reset(new CompositeEnvWrapper(env_ptr_.get(), fs_)); env_ = composite_env_ptr_.get(); } else { env_ = env_ptr_.get(); } dbname1_ = test::PerThreadDBPath("env_fs_test1"); dbname2_ = test::PerThreadDBPath("env_fs_test2"); } ~EnvFSTestWithParam() = default; Env* env_; std::unique_ptr env_ptr_; std::unique_ptr composite_env_ptr_; std::shared_ptr fs_; std::string dbname1_; std::string dbname2_; }; TEST_P(EnvFSTestWithParam, OptionsTest) { Options opts; opts.env = env_; opts.create_if_missing = true; std::string dbname = dbname1_; if (env_) { if (fs_) { ASSERT_EQ(fs_.get(), env_->GetFileSystem().get()); } else { ASSERT_NE(FileSystem::Default().get(), env_->GetFileSystem().get()); } } for (int i = 0; i < 2; ++i) { DB* db; Status s = DB::Open(opts, dbname, &db); ASSERT_OK(s); WriteOptions wo; ASSERT_OK(db->Put(wo, "a", "a")); ASSERT_OK(db->Flush(FlushOptions())); ASSERT_OK(db->Put(wo, "b", "b")); ASSERT_OK(db->Flush(FlushOptions())); ASSERT_OK(db->CompactRange(CompactRangeOptions(), nullptr, nullptr)); std::string val; ASSERT_OK(db->Get(ReadOptions(), "a", &val)); ASSERT_EQ("a", val); ASSERT_OK(db->Get(ReadOptions(), "b", &val)); ASSERT_EQ("b", val); ASSERT_OK(db->Close()); delete db; ASSERT_OK(DestroyDB(dbname, opts)); dbname = dbname2_; } } // The parameters are as follows - // 1. True means Options::env is non-null, false means null // 2. True means use Env::Default, false means custom // 3. True means use FileSystem::Default, false means custom INSTANTIATE_TEST_CASE_P(EnvFSTest, EnvFSTestWithParam, ::testing::Combine(::testing::Bool(), ::testing::Bool(), ::testing::Bool())); // This test ensures that default Env and those allocated by // NewCompositeEnv() all share the same threadpool TEST_F(EnvTest, MultipleCompositeEnv) { std::shared_ptr fs1 = std::make_shared(FileSystem::Default()); std::shared_ptr fs2 = std::make_shared(FileSystem::Default()); std::unique_ptr env1 = NewCompositeEnv(fs1); std::unique_ptr env2 = NewCompositeEnv(fs2); Env::Default()->SetBackgroundThreads(8, Env::HIGH); Env::Default()->SetBackgroundThreads(16, Env::LOW); ASSERT_EQ(env1->GetBackgroundThreads(Env::LOW), 16); ASSERT_EQ(env1->GetBackgroundThreads(Env::HIGH), 8); ASSERT_EQ(env2->GetBackgroundThreads(Env::LOW), 16); ASSERT_EQ(env2->GetBackgroundThreads(Env::HIGH), 8); } TEST_F(EnvTest, IsDirectory) { Status s = Env::Default()->CreateDirIfMissing(test_directory_); ASSERT_OK(s); const std::string test_sub_dir = test_directory_ + "sub1"; const std::string test_file_path = test_directory_ + "file1"; ASSERT_OK(Env::Default()->CreateDirIfMissing(test_sub_dir)); bool is_dir = false; ASSERT_OK(Env::Default()->IsDirectory(test_sub_dir, &is_dir)); ASSERT_TRUE(is_dir); { std::unique_ptr wfile; s = Env::Default()->GetFileSystem()->NewWritableFile( test_file_path, FileOptions(), &wfile, /*dbg=*/nullptr); ASSERT_OK(s); std::unique_ptr fwriter; fwriter.reset(new WritableFileWriter(std::move(wfile), test_file_path, FileOptions(), SystemClock::Default().get())); constexpr char buf[] = "test"; s = fwriter->Append(IOOptions(), buf); ASSERT_OK(s); } ASSERT_OK(Env::Default()->IsDirectory(test_file_path, &is_dir)); ASSERT_FALSE(is_dir); } TEST_F(EnvTest, EnvWriteVerificationTest) { Status s = Env::Default()->CreateDirIfMissing(test_directory_); const std::string test_file_path = test_directory_ + "file1"; ASSERT_OK(s); std::shared_ptr fault_fs( new FaultInjectionTestFS(FileSystem::Default())); fault_fs->SetChecksumHandoffFuncType(ChecksumType::kCRC32c); std::unique_ptr fault_fs_env(NewCompositeEnv(fault_fs)); std::unique_ptr file; s = fault_fs_env->NewWritableFile(test_file_path, &file, EnvOptions()); ASSERT_OK(s); DataVerificationInfo v_info; std::string test_data = "test"; std::string checksum; uint32_t v_crc32c = crc32c::Extend(0, test_data.c_str(), test_data.size()); PutFixed32(&checksum, v_crc32c); v_info.checksum = Slice(checksum); s = file->Append(Slice(test_data), v_info); ASSERT_OK(s); } class CreateEnvTest : public testing::Test { public: CreateEnvTest() { config_options_.ignore_unknown_options = false; config_options_.ignore_unsupported_options = false; } ConfigOptions config_options_; }; TEST_F(CreateEnvTest, LoadCTRProvider) { config_options_.invoke_prepare_options = false; std::string CTR = CTREncryptionProvider::kClassName(); std::shared_ptr provider; // Test a provider with no cipher ASSERT_OK( EncryptionProvider::CreateFromString(config_options_, CTR, &provider)); ASSERT_NE(provider, nullptr); ASSERT_EQ(provider->Name(), CTR); ASSERT_NOK(provider->PrepareOptions(config_options_)); ASSERT_NOK(provider->ValidateOptions(DBOptions(), ColumnFamilyOptions())); auto cipher = provider->GetOptions>("Cipher"); ASSERT_NE(cipher, nullptr); ASSERT_EQ(cipher->get(), nullptr); provider.reset(); ASSERT_OK(EncryptionProvider::CreateFromString(config_options_, CTR + "://test", &provider)); ASSERT_NE(provider, nullptr); ASSERT_EQ(provider->Name(), CTR); ASSERT_OK(provider->PrepareOptions(config_options_)); ASSERT_OK(provider->ValidateOptions(DBOptions(), ColumnFamilyOptions())); cipher = provider->GetOptions>("Cipher"); ASSERT_NE(cipher, nullptr); ASSERT_NE(cipher->get(), nullptr); ASSERT_STREQ(cipher->get()->Name(), "ROT13"); provider.reset(); ASSERT_OK(EncryptionProvider::CreateFromString(config_options_, "1://test", &provider)); ASSERT_NE(provider, nullptr); ASSERT_EQ(provider->Name(), CTR); ASSERT_OK(provider->PrepareOptions(config_options_)); ASSERT_OK(provider->ValidateOptions(DBOptions(), ColumnFamilyOptions())); cipher = provider->GetOptions>("Cipher"); ASSERT_NE(cipher, nullptr); ASSERT_NE(cipher->get(), nullptr); ASSERT_STREQ(cipher->get()->Name(), "ROT13"); provider.reset(); ASSERT_OK(EncryptionProvider::CreateFromString( config_options_, "id=" + CTR + "; cipher=ROT13", &provider)); ASSERT_NE(provider, nullptr); ASSERT_EQ(provider->Name(), CTR); cipher = provider->GetOptions>("Cipher"); ASSERT_NE(cipher, nullptr); ASSERT_NE(cipher->get(), nullptr); ASSERT_STREQ(cipher->get()->Name(), "ROT13"); provider.reset(); } TEST_F(CreateEnvTest, LoadROT13Cipher) { std::shared_ptr cipher; // Test a provider with no cipher ASSERT_OK(BlockCipher::CreateFromString(config_options_, "ROT13", &cipher)); ASSERT_NE(cipher, nullptr); ASSERT_STREQ(cipher->Name(), "ROT13"); } TEST_F(CreateEnvTest, CreateDefaultSystemClock) { std::shared_ptr clock, copy; ASSERT_OK(SystemClock::CreateFromString(config_options_, SystemClock::kDefaultName(), &clock)); ASSERT_NE(clock, nullptr); ASSERT_EQ(clock, SystemClock::Default()); std::string opts_str = clock->ToString(config_options_); std::string mismatch; ASSERT_OK(SystemClock::CreateFromString(config_options_, opts_str, ©)); ASSERT_TRUE(clock->AreEquivalent(config_options_, copy.get(), &mismatch)); } TEST_F(CreateEnvTest, CreateMockSystemClock) { std::shared_ptr mock, copy; config_options_.registry->AddLibrary("test")->AddFactory( MockSystemClock::kClassName(), [](const std::string& /*uri*/, std::unique_ptr* guard, std::string* /* errmsg */) { guard->reset(new MockSystemClock(nullptr)); return guard->get(); }); ASSERT_OK(SystemClock::CreateFromString( config_options_, EmulatedSystemClock::kClassName(), &mock)); ASSERT_NE(mock, nullptr); ASSERT_STREQ(mock->Name(), EmulatedSystemClock::kClassName()); ASSERT_EQ(mock->Inner(), SystemClock::Default().get()); std::string opts_str = mock->ToString(config_options_); std::string mismatch; ASSERT_OK(SystemClock::CreateFromString(config_options_, opts_str, ©)); ASSERT_TRUE(mock->AreEquivalent(config_options_, copy.get(), &mismatch)); std::string id = std::string("id=") + EmulatedSystemClock::kClassName() + ";target=" + MockSystemClock::kClassName(); ASSERT_OK(SystemClock::CreateFromString(config_options_, id, &mock)); ASSERT_NE(mock, nullptr); ASSERT_STREQ(mock->Name(), EmulatedSystemClock::kClassName()); ASSERT_NE(mock->Inner(), nullptr); ASSERT_STREQ(mock->Inner()->Name(), MockSystemClock::kClassName()); ASSERT_EQ(mock->Inner()->Inner(), SystemClock::Default().get()); opts_str = mock->ToString(config_options_); ASSERT_OK(SystemClock::CreateFromString(config_options_, opts_str, ©)); ASSERT_TRUE(mock->AreEquivalent(config_options_, copy.get(), &mismatch)); ASSERT_OK(SystemClock::CreateFromString( config_options_, EmulatedSystemClock::kClassName(), &mock)); } TEST_F(CreateEnvTest, CreateReadOnlyFileSystem) { std::shared_ptr fs, copy; ASSERT_OK(FileSystem::CreateFromString( config_options_, ReadOnlyFileSystem::kClassName(), &fs)); ASSERT_NE(fs, nullptr); ASSERT_STREQ(fs->Name(), ReadOnlyFileSystem::kClassName()); ASSERT_EQ(fs->Inner(), FileSystem::Default().get()); std::string opts_str = fs->ToString(config_options_); std::string mismatch; ASSERT_OK(FileSystem::CreateFromString(config_options_, opts_str, ©)); ASSERT_TRUE(fs->AreEquivalent(config_options_, copy.get(), &mismatch)); ASSERT_OK(FileSystem::CreateFromString( config_options_, std::string("id=") + ReadOnlyFileSystem::kClassName() + "; target=" + TimedFileSystem::kClassName(), &fs)); ASSERT_NE(fs, nullptr); opts_str = fs->ToString(config_options_); ASSERT_STREQ(fs->Name(), ReadOnlyFileSystem::kClassName()); ASSERT_NE(fs->Inner(), nullptr); ASSERT_STREQ(fs->Inner()->Name(), TimedFileSystem::kClassName()); ASSERT_EQ(fs->Inner()->Inner(), FileSystem::Default().get()); ASSERT_OK(FileSystem::CreateFromString(config_options_, opts_str, ©)); ASSERT_TRUE(fs->AreEquivalent(config_options_, copy.get(), &mismatch)); } TEST_F(CreateEnvTest, CreateTimedFileSystem) { std::shared_ptr fs, copy; ASSERT_OK(FileSystem::CreateFromString(config_options_, TimedFileSystem::kClassName(), &fs)); ASSERT_NE(fs, nullptr); ASSERT_STREQ(fs->Name(), TimedFileSystem::kClassName()); ASSERT_EQ(fs->Inner(), FileSystem::Default().get()); std::string opts_str = fs->ToString(config_options_); std::string mismatch; ASSERT_OK(FileSystem::CreateFromString(config_options_, opts_str, ©)); ASSERT_TRUE(fs->AreEquivalent(config_options_, copy.get(), &mismatch)); ASSERT_OK(FileSystem::CreateFromString( config_options_, std::string("id=") + TimedFileSystem::kClassName() + "; target=" + ReadOnlyFileSystem::kClassName(), &fs)); ASSERT_NE(fs, nullptr); opts_str = fs->ToString(config_options_); ASSERT_STREQ(fs->Name(), TimedFileSystem::kClassName()); ASSERT_NE(fs->Inner(), nullptr); ASSERT_STREQ(fs->Inner()->Name(), ReadOnlyFileSystem::kClassName()); ASSERT_EQ(fs->Inner()->Inner(), FileSystem::Default().get()); ASSERT_OK(FileSystem::CreateFromString(config_options_, opts_str, ©)); ASSERT_TRUE(fs->AreEquivalent(config_options_, copy.get(), &mismatch)); } TEST_F(CreateEnvTest, CreateCountedFileSystem) { std::shared_ptr fs, copy; ASSERT_OK(FileSystem::CreateFromString(config_options_, CountedFileSystem::kClassName(), &fs)); ASSERT_NE(fs, nullptr); ASSERT_STREQ(fs->Name(), CountedFileSystem::kClassName()); ASSERT_EQ(fs->Inner(), FileSystem::Default().get()); std::string opts_str = fs->ToString(config_options_); std::string mismatch; ASSERT_OK(FileSystem::CreateFromString(config_options_, opts_str, ©)); ASSERT_TRUE(fs->AreEquivalent(config_options_, copy.get(), &mismatch)); ASSERT_OK(FileSystem::CreateFromString( config_options_, std::string("id=") + CountedFileSystem::kClassName() + "; target=" + ReadOnlyFileSystem::kClassName(), &fs)); ASSERT_NE(fs, nullptr); opts_str = fs->ToString(config_options_); ASSERT_STREQ(fs->Name(), CountedFileSystem::kClassName()); ASSERT_NE(fs->Inner(), nullptr); ASSERT_STREQ(fs->Inner()->Name(), ReadOnlyFileSystem::kClassName()); ASSERT_EQ(fs->Inner()->Inner(), FileSystem::Default().get()); ASSERT_OK(FileSystem::CreateFromString(config_options_, opts_str, ©)); ASSERT_TRUE(fs->AreEquivalent(config_options_, copy.get(), &mismatch)); } #ifndef OS_WIN TEST_F(CreateEnvTest, CreateChrootFileSystem) { std::shared_ptr fs, copy; auto tmp_dir = test::TmpDir(Env::Default()); // The Chroot FileSystem has a required "chroot_dir" option. ASSERT_NOK(FileSystem::CreateFromString(config_options_, ChrootFileSystem::kClassName(), &fs)); // ChrootFileSystem fails with an invalid directory ASSERT_NOK(FileSystem::CreateFromString( config_options_, std::string("chroot_dir=/No/Such/Directory; id=") + ChrootFileSystem::kClassName(), &fs)); std::string chroot_opts = std::string("chroot_dir=") + tmp_dir + std::string("; id=") + ChrootFileSystem::kClassName(); // Create a valid ChrootFileSystem with an inner Default ASSERT_OK(FileSystem::CreateFromString(config_options_, chroot_opts, &fs)); ASSERT_NE(fs, nullptr); ASSERT_STREQ(fs->Name(), ChrootFileSystem::kClassName()); ASSERT_EQ(fs->Inner(), FileSystem::Default().get()); std::string opts_str = fs->ToString(config_options_); std::string mismatch; ASSERT_OK(FileSystem::CreateFromString(config_options_, opts_str, ©)); ASSERT_TRUE(fs->AreEquivalent(config_options_, copy.get(), &mismatch)); // Create a valid ChrootFileSystem with an inner TimedFileSystem ASSERT_OK(FileSystem::CreateFromString( config_options_, chroot_opts + "; target=" + TimedFileSystem::kClassName(), &fs)); ASSERT_NE(fs, nullptr); ASSERT_STREQ(fs->Name(), ChrootFileSystem::kClassName()); ASSERT_NE(fs->Inner(), nullptr); ASSERT_STREQ(fs->Inner()->Name(), TimedFileSystem::kClassName()); ASSERT_EQ(fs->Inner()->Inner(), FileSystem::Default().get()); opts_str = fs->ToString(config_options_); ASSERT_OK(FileSystem::CreateFromString(config_options_, opts_str, ©)); ASSERT_TRUE(fs->AreEquivalent(config_options_, copy.get(), &mismatch)); // Create a TimedFileSystem with an inner ChrootFileSystem ASSERT_OK(FileSystem::CreateFromString( config_options_, "target={" + chroot_opts + "}; id=" + TimedFileSystem::kClassName(), &fs)); ASSERT_NE(fs, nullptr); ASSERT_STREQ(fs->Name(), TimedFileSystem::kClassName()); ASSERT_NE(fs->Inner(), nullptr); ASSERT_STREQ(fs->Inner()->Name(), ChrootFileSystem::kClassName()); ASSERT_EQ(fs->Inner()->Inner(), FileSystem::Default().get()); opts_str = fs->ToString(config_options_); ASSERT_OK(FileSystem::CreateFromString(config_options_, opts_str, ©)); ASSERT_TRUE(fs->AreEquivalent(config_options_, copy.get(), &mismatch)); } #endif // OS_WIN TEST_F(CreateEnvTest, CreateEncryptedFileSystem) { std::shared_ptr fs, copy; std::string base_opts = std::string("provider=1://test; id=") + EncryptedFileSystem::kClassName(); // Rewrite the default FileSystem URI if the "TEST_FS_URI" environment // variable is set. This is useful to test customer encryption plugins. const char* uri = getenv("TEST_FS_URI"); if (uri != nullptr) { base_opts = uri; } // The EncryptedFileSystem requires a "provider" option. ASSERT_NOK(FileSystem::CreateFromString( config_options_, EncryptedFileSystem::kClassName(), &fs)); ASSERT_OK(FileSystem::CreateFromString(config_options_, base_opts, &fs)); ASSERT_NE(fs, nullptr); ASSERT_STREQ(fs->Name(), EncryptedFileSystem::kClassName()); ASSERT_EQ(fs->Inner(), FileSystem::Default().get()); std::string opts_str = fs->ToString(config_options_); std::string mismatch; ASSERT_OK(FileSystem::CreateFromString(config_options_, opts_str, ©)); ASSERT_TRUE(fs->AreEquivalent(config_options_, copy.get(), &mismatch)); ASSERT_OK(FileSystem::CreateFromString( config_options_, base_opts + "; target=" + TimedFileSystem::kClassName(), &fs)); ASSERT_NE(fs, nullptr); ASSERT_STREQ(fs->Name(), EncryptedFileSystem::kClassName()); ASSERT_NE(fs->Inner(), nullptr); ASSERT_STREQ(fs->Inner()->Name(), TimedFileSystem::kClassName()); ASSERT_EQ(fs->Inner()->Inner(), FileSystem::Default().get()); opts_str = fs->ToString(config_options_); ASSERT_OK(FileSystem::CreateFromString(config_options_, opts_str, ©)); ASSERT_TRUE(fs->AreEquivalent(config_options_, copy.get(), &mismatch)); } namespace { constexpr size_t kThreads = 8; constexpr size_t kIdsPerThread = 1000; // This is a mini-stress test to check for duplicates in functions like // GenerateUniqueId() template > struct NoDuplicateMiniStressTest { std::unordered_set ids; std::mutex mutex; Env* env; NoDuplicateMiniStressTest() { env = Env::Default(); } virtual ~NoDuplicateMiniStressTest() = default; void Run() { std::array threads; for (size_t i = 0; i < kThreads; ++i) { threads[i] = std::thread([&]() { ThreadFn(); }); } for (auto& thread : threads) { thread.join(); } // All must be unique ASSERT_EQ(ids.size(), kThreads * kIdsPerThread); } void ThreadFn() { std::array my_ids; // Generate in parallel threads as fast as possible for (size_t i = 0; i < kIdsPerThread; ++i) { my_ids[i] = Generate(); } // Now collate std::lock_guard lock(mutex); for (auto& id : my_ids) { ids.insert(id); } } virtual IdType Generate() = 0; }; void VerifyRfcUuids(const std::unordered_set& uuids) { if (uuids.empty()) { return; } } using uint64_pair_t = std::pair; struct HashUint64Pair { std::size_t operator()( std::pair const& u) const noexcept { // Assume suitable distribution already return static_cast(u.first ^ u.second); } }; } // namespace TEST_F(EnvTest, GenerateUniqueId) { struct MyStressTest : public NoDuplicateMiniStressTest { std::string Generate() override { return env->GenerateUniqueId(); } }; MyStressTest t; t.Run(); // Basically verify RFC-4122 format for (auto& uuid : t.ids) { ASSERT_EQ(36U, uuid.size()); ASSERT_EQ('-', uuid[8]); ASSERT_EQ('-', uuid[13]); ASSERT_EQ('-', uuid[18]); ASSERT_EQ('-', uuid[23]); } } TEST_F(EnvTest, GenerateDbSessionId) { struct MyStressTest : public NoDuplicateMiniStressTest { std::string Generate() override { return DBImpl::GenerateDbSessionId(env); } }; MyStressTest t; t.Run(); // Basically verify session ID for (auto& id : t.ids) { ASSERT_EQ(20U, id.size()); } } constexpr bool kRequirePortGenerateRfcUuid = #if defined(OS_LINUX) || defined(OS_ANDROID) || defined(OS_WIN) true; #else false; #endif TEST_F(EnvTest, PortGenerateRfcUuid) { if (!kRequirePortGenerateRfcUuid) { ROCKSDB_GTEST_SKIP("Not supported/expected on this platform"); return; } struct MyStressTest : public NoDuplicateMiniStressTest { std::string Generate() override { std::string u; assert(port::GenerateRfcUuid(&u)); return u; } }; MyStressTest t; t.Run(); // Extra verification on versions and variants VerifyRfcUuids(t.ids); } // Test the atomic, linear generation of GenerateRawUniqueId TEST_F(EnvTest, GenerateRawUniqueId) { struct MyStressTest : public NoDuplicateMiniStressTest { uint64_pair_t Generate() override { uint64_pair_t p; GenerateRawUniqueId(&p.first, &p.second); return p; } }; MyStressTest t; t.Run(); } // Test that each entropy source ("track") is at least adequate TEST_F(EnvTest, GenerateRawUniqueIdTrackPortUuidOnly) { if (!kRequirePortGenerateRfcUuid) { ROCKSDB_GTEST_SKIP("Not supported/expected on this platform"); return; } struct MyStressTest : public NoDuplicateMiniStressTest { uint64_pair_t Generate() override { uint64_pair_t p; TEST_GenerateRawUniqueId(&p.first, &p.second, false, true, true); return p; } }; MyStressTest t; t.Run(); } TEST_F(EnvTest, GenerateRawUniqueIdTrackEnvDetailsOnly) { struct MyStressTest : public NoDuplicateMiniStressTest { uint64_pair_t Generate() override { uint64_pair_t p; TEST_GenerateRawUniqueId(&p.first, &p.second, true, false, true); return p; } }; MyStressTest t; t.Run(); } TEST_F(EnvTest, GenerateRawUniqueIdTrackRandomDeviceOnly) { struct MyStressTest : public NoDuplicateMiniStressTest { uint64_pair_t Generate() override { uint64_pair_t p; TEST_GenerateRawUniqueId(&p.first, &p.second, true, true, false); return p; } }; MyStressTest t; t.Run(); } TEST_F(EnvTest, SemiStructuredUniqueIdGenTest) { // Must be thread safe and usable as a static static SemiStructuredUniqueIdGen gen; struct MyStressTest : public NoDuplicateMiniStressTest { uint64_pair_t Generate() override { uint64_pair_t p; gen.GenerateNext(&p.first, &p.second); return p; } }; MyStressTest t; t.Run(); } TEST_F(EnvTest, SemiStructuredUniqueIdGenTestSmaller) { // For small generated types, will cycle through all the possible values. SemiStructuredUniqueIdGen gen; std::vector hit(256); for (int i = 0; i < 256; ++i) { auto val = gen.GenerateNext(); ASSERT_FALSE(hit[val]); hit[val] = true; } for (int i = 0; i < 256; ++i) { ASSERT_TRUE(hit[i]); } } TEST_F(EnvTest, UnpredictableUniqueIdGenTest1) { // Must be thread safe and usable as a static. static UnpredictableUniqueIdGen gen; struct MyStressTest : public NoDuplicateMiniStressTest { uint64_pair_t Generate() override { uint64_pair_t p; gen.GenerateNext(&p.first, &p.second); return p; } }; MyStressTest t; t.Run(); } TEST_F(EnvTest, UnpredictableUniqueIdGenTest2) { // Even if we completely strip the seeding and entropy of the structure // down to a bare minimum, we still get quality pseudorandom results. static UnpredictableUniqueIdGen gen{ UnpredictableUniqueIdGen::TEST_ZeroInitialized{}}; struct MyStressTest : public NoDuplicateMiniStressTest { uint64_pair_t Generate() override { uint64_pair_t p; // No extra entropy is required to get quality pseudorandom results gen.GenerateNextWithEntropy(&p.first, &p.second, /*no extra entropy*/ 0); return p; } }; MyStressTest t; t.Run(); } TEST_F(EnvTest, UnpredictableUniqueIdGenTest3) { struct MyStressTest : public NoDuplicateMiniStressTest { uint64_pair_t Generate() override { uint64_pair_t p; thread_local UnpredictableUniqueIdGen gen{ UnpredictableUniqueIdGen::TEST_ZeroInitialized{}}; // Even without the counter (reset it to thread id), we get quality // single-threaded results (because part of each result is fed back // into pool). gen.TEST_counter().store(Env::Default()->GetThreadID()); gen.GenerateNext(&p.first, &p.second); return p; } }; MyStressTest t; t.Run(); } TEST_F(EnvTest, UnpredictableUniqueIdGenTest4) { struct MyStressTest : public NoDuplicateMiniStressTest { uint64_pair_t Generate() override { uint64_pair_t p; // Even if we reset the state to thread ID each time, RDTSC instruction // suffices for quality single-threaded results. UnpredictableUniqueIdGen gen{ UnpredictableUniqueIdGen::TEST_ZeroInitialized{}}; gen.TEST_counter().store(Env::Default()->GetThreadID()); gen.GenerateNext(&p.first, &p.second); return p; } }; MyStressTest t; #ifdef __SSE4_2__ // Our rough check for RDTSC t.Run(); #else ROCKSDB_GTEST_BYPASS("Requires IA32 with RDTSC"); // because nanosecond time might not be high enough fidelity to have // incremented after a few hundred instructions, especially in cases where // we really only have microsecond fidelity. Also, wall clock might not be // monotonic. #endif } TEST_F(EnvTest, FailureToCreateLockFile) { auto env = Env::Default(); auto fs = env->GetFileSystem(); std::string dir = test::PerThreadDBPath(env, "lockdir"); std::string file = dir + "/lockfile"; // Ensure directory doesn't exist ASSERT_OK(DestroyDir(env, dir)); // Make sure that we can acquire a file lock after the first attempt fails FileLock* lock = nullptr; ASSERT_NOK(fs->LockFile(file, IOOptions(), &lock, /*dbg*/ nullptr)); ASSERT_FALSE(lock); ASSERT_OK(fs->CreateDir(dir, IOOptions(), /*dbg*/ nullptr)); ASSERT_OK(fs->LockFile(file, IOOptions(), &lock, /*dbg*/ nullptr)); ASSERT_OK(fs->UnlockFile(lock, IOOptions(), /*dbg*/ nullptr)); // Clean up ASSERT_OK(DestroyDir(env, dir)); } TEST_F(CreateEnvTest, CreateDefaultEnv) { ConfigOptions options; options.ignore_unsupported_options = false; std::shared_ptr guard; Env* env = nullptr; ASSERT_OK(Env::CreateFromString(options, "", &env)); ASSERT_EQ(env, Env::Default()); env = nullptr; ASSERT_OK(Env::CreateFromString(options, Env::kDefaultName(), &env)); ASSERT_EQ(env, Env::Default()); env = nullptr; ASSERT_OK(Env::CreateFromString(options, "", &env, &guard)); ASSERT_EQ(env, Env::Default()); ASSERT_EQ(guard, nullptr); env = nullptr; ASSERT_OK(Env::CreateFromString(options, Env::kDefaultName(), &env, &guard)); ASSERT_EQ(env, Env::Default()); ASSERT_EQ(guard, nullptr); std::string opt_str = env->ToString(options); ASSERT_OK(Env::CreateFromString(options, opt_str, &env)); ASSERT_EQ(env, Env::Default()); ASSERT_OK(Env::CreateFromString(options, opt_str, &env, &guard)); ASSERT_EQ(env, Env::Default()); ASSERT_EQ(guard, nullptr); } namespace { class WrappedEnv : public EnvWrapper { public: explicit WrappedEnv(Env* t) : EnvWrapper(t) {} explicit WrappedEnv(const std::shared_ptr& t) : EnvWrapper(t) {} static const char* kClassName() { return "WrappedEnv"; } const char* Name() const override { return kClassName(); } static void Register(ObjectLibrary& lib, const std::string& /*arg*/) { lib.AddFactory( WrappedEnv::kClassName(), [](const std::string& /*uri*/, std::unique_ptr* guard, std::string* /* errmsg */) { guard->reset(new WrappedEnv(nullptr)); return guard->get(); }); } }; } // namespace TEST_F(CreateEnvTest, CreateMockEnv) { ConfigOptions options; options.ignore_unsupported_options = false; WrappedEnv::Register(*(options.registry->AddLibrary("test")), ""); std::shared_ptr guard, copy; std::string opt_str; Env* env = nullptr; ASSERT_NOK(Env::CreateFromString(options, MockEnv::kClassName(), &env)); ASSERT_OK( Env::CreateFromString(options, MockEnv::kClassName(), &env, &guard)); ASSERT_NE(env, nullptr); ASSERT_NE(env, Env::Default()); opt_str = env->ToString(options); ASSERT_OK(Env::CreateFromString(options, opt_str, &env, ©)); ASSERT_NE(copy, guard); std::string mismatch; ASSERT_TRUE(guard->AreEquivalent(options, copy.get(), &mismatch)); guard.reset(MockEnv::Create(Env::Default(), SystemClock::Default())); opt_str = guard->ToString(options); ASSERT_OK(Env::CreateFromString(options, opt_str, &env, ©)); std::unique_ptr wrapped_env(new WrappedEnv(Env::Default())); guard.reset(MockEnv::Create(wrapped_env.get(), SystemClock::Default())); opt_str = guard->ToString(options); ASSERT_OK(Env::CreateFromString(options, opt_str, &env, ©)); opt_str = copy->ToString(options); } TEST_F(CreateEnvTest, CreateWrappedEnv) { ConfigOptions options; options.ignore_unsupported_options = false; WrappedEnv::Register(*(options.registry->AddLibrary("test")), ""); Env* env = nullptr; std::shared_ptr guard, copy; std::string opt_str; std::string mismatch; ASSERT_NOK(Env::CreateFromString(options, WrappedEnv::kClassName(), &env)); ASSERT_OK( Env::CreateFromString(options, WrappedEnv::kClassName(), &env, &guard)); ASSERT_NE(env, nullptr); ASSERT_NE(env, Env::Default()); ASSERT_FALSE(guard->AreEquivalent(options, Env::Default(), &mismatch)); opt_str = env->ToString(options); ASSERT_OK(Env::CreateFromString(options, opt_str, &env, ©)); ASSERT_NE(copy, guard); ASSERT_TRUE(guard->AreEquivalent(options, copy.get(), &mismatch)); guard.reset(new WrappedEnv(std::make_shared(Env::Default()))); ASSERT_NE(guard.get(), env); opt_str = guard->ToString(options); ASSERT_OK(Env::CreateFromString(options, opt_str, &env, ©)); ASSERT_NE(copy, guard); ASSERT_TRUE(guard->AreEquivalent(options, copy.get(), &mismatch)); guard.reset(new WrappedEnv(std::make_shared( std::make_shared(Env::Default())))); ASSERT_NE(guard.get(), env); opt_str = guard->ToString(options); ASSERT_OK(Env::CreateFromString(options, opt_str, &env, ©)); ASSERT_NE(copy, guard); ASSERT_TRUE(guard->AreEquivalent(options, copy.get(), &mismatch)); } TEST_F(CreateEnvTest, CreateCompositeEnv) { ConfigOptions options; options.ignore_unsupported_options = false; std::shared_ptr guard, copy; Env* env = nullptr; std::string mismatch, opt_str; WrappedEnv::Register(*(options.registry->AddLibrary("test")), ""); std::unique_ptr base(NewCompositeEnv(FileSystem::Default())); std::unique_ptr wrapped(new WrappedEnv(Env::Default())); std::shared_ptr timed_fs = std::make_shared(FileSystem::Default()); std::shared_ptr clock = std::make_shared(SystemClock::Default()); opt_str = base->ToString(options); ASSERT_NOK(Env::CreateFromString(options, opt_str, &env)); ASSERT_OK(Env::CreateFromString(options, opt_str, &env, &guard)); ASSERT_NE(env, nullptr); ASSERT_NE(env, Env::Default()); ASSERT_EQ(env->GetFileSystem(), FileSystem::Default()); ASSERT_EQ(env->GetSystemClock(), SystemClock::Default()); base = NewCompositeEnv(timed_fs); opt_str = base->ToString(options); ASSERT_NOK(Env::CreateFromString(options, opt_str, &env)); ASSERT_OK(Env::CreateFromString(options, opt_str, &env, &guard)); ASSERT_NE(env, nullptr); ASSERT_NE(env, Env::Default()); ASSERT_NE(env->GetFileSystem(), FileSystem::Default()); ASSERT_EQ(env->GetSystemClock(), SystemClock::Default()); env = nullptr; guard.reset(new CompositeEnvWrapper(wrapped.get(), timed_fs)); opt_str = guard->ToString(options); ASSERT_OK(Env::CreateFromString(options, opt_str, &env, ©)); ASSERT_NE(env, nullptr); ASSERT_NE(env, Env::Default()); ASSERT_TRUE(guard->AreEquivalent(options, copy.get(), &mismatch)); env = nullptr; guard.reset(new CompositeEnvWrapper(wrapped.get(), clock)); opt_str = guard->ToString(options); ASSERT_OK(Env::CreateFromString(options, opt_str, &env, ©)); ASSERT_NE(env, nullptr); ASSERT_NE(env, Env::Default()); ASSERT_TRUE(guard->AreEquivalent(options, copy.get(), &mismatch)); env = nullptr; guard.reset(new CompositeEnvWrapper(wrapped.get(), timed_fs, clock)); opt_str = guard->ToString(options); ASSERT_OK(Env::CreateFromString(options, opt_str, &env, ©)); ASSERT_NE(env, nullptr); ASSERT_NE(env, Env::Default()); ASSERT_TRUE(guard->AreEquivalent(options, copy.get(), &mismatch)); guard.reset(new CompositeEnvWrapper(nullptr, timed_fs, clock)); ColumnFamilyOptions cf_opts; DBOptions db_opts; db_opts.env = guard.get(); auto comp = db_opts.env->CheckedCast(); ASSERT_NE(comp, nullptr); ASSERT_EQ(comp->Inner(), nullptr); ASSERT_NOK(ValidateOptions(db_opts, cf_opts)); ASSERT_OK(db_opts.env->PrepareOptions(options)); ASSERT_NE(comp->Inner(), nullptr); ASSERT_OK(ValidateOptions(db_opts, cf_opts)); } // Forward declaration class ReadAsyncFS; struct MockIOHandle { std::function cb; void* cb_arg; bool create_io_error; }; // ReadAsyncFS and ReadAsyncRandomAccessFile mocks the FS doing asynchronous // reads by creating threads that submit read requests and then calling Poll API // to obtain those results. class ReadAsyncRandomAccessFile : public FSRandomAccessFileOwnerWrapper { public: ReadAsyncRandomAccessFile(ReadAsyncFS& fs, std::unique_ptr& file) : FSRandomAccessFileOwnerWrapper(std::move(file)), fs_(fs) {} IOStatus ReadAsync(FSReadRequest& req, const IOOptions& opts, std::function cb, void* cb_arg, void** io_handle, IOHandleDeleter* del_fn, IODebugContext* dbg) override; private: ReadAsyncFS& fs_; std::unique_ptr file_; int counter = 0; }; class ReadAsyncFS : public FileSystemWrapper { public: explicit ReadAsyncFS(const std::shared_ptr& wrapped) : FileSystemWrapper(wrapped) {} static const char* kClassName() { return "ReadAsyncFS"; } const char* Name() const override { return kClassName(); } IOStatus NewRandomAccessFile(const std::string& fname, const FileOptions& opts, std::unique_ptr* result, IODebugContext* dbg) override { std::unique_ptr file; IOStatus s = target()->NewRandomAccessFile(fname, opts, &file, dbg); EXPECT_OK(s); result->reset(new ReadAsyncRandomAccessFile(*this, file)); return s; } IOStatus Poll(std::vector& io_handles, size_t /*min_completions*/) override { // Wait for the threads completion. for (auto& t : workers) { t.join(); } for (size_t i = 0; i < io_handles.size(); i++) { MockIOHandle* handle = static_cast(io_handles[i]); if (handle->create_io_error) { FSReadRequest req; req.status = IOStatus::IOError(); handle->cb(req, handle->cb_arg); } } return IOStatus::OK(); } std::vector workers; }; IOStatus ReadAsyncRandomAccessFile::ReadAsync( FSReadRequest& req, const IOOptions& opts, std::function cb, void* cb_arg, void** io_handle, IOHandleDeleter* del_fn, IODebugContext* dbg) { IOHandleDeleter deletefn = [](void* args) -> void { delete (static_cast(args)); args = nullptr; }; *del_fn = deletefn; // Allocate and populate io_handle. MockIOHandle* mock_handle = new MockIOHandle(); bool create_io_error = false; if (counter % 2) { create_io_error = true; } mock_handle->create_io_error = create_io_error; mock_handle->cb = cb; mock_handle->cb_arg = cb_arg; *io_handle = static_cast(mock_handle); counter++; // Submit read request asynchronously. std::function submit_request = [&opts, cb, cb_arg, dbg, create_io_error, this](FSReadRequest _req) { if (!create_io_error) { _req.status = target()->Read(_req.offset, _req.len, opts, &(_req.result), _req.scratch, dbg); cb(_req, cb_arg); } }; fs_.workers.emplace_back(submit_request, std::move(req)); return IOStatus::OK(); } class TestAsyncRead : public testing::Test { public: TestAsyncRead() { env_ = Env::Default(); } Env* env_; }; // Tests the default implementation of ReadAsync API. TEST_F(TestAsyncRead, ReadAsync) { EnvOptions soptions; std::shared_ptr fs = std::make_shared(env_->GetFileSystem()); std::string fname = test::PerThreadDBPath(env_, "testfile"); const size_t kSectorSize = 4096; const size_t kNumSectors = 8; // 1. create & write to a file. { std::unique_ptr wfile; ASSERT_OK( fs->NewWritableFile(fname, FileOptions(), &wfile, nullptr /*dbg*/)); for (size_t i = 0; i < kNumSectors; ++i) { auto data = NewAligned(kSectorSize * 8, static_cast(i + 1)); Slice slice(data.get(), kSectorSize); ASSERT_OK(wfile->Append(slice, IOOptions(), nullptr)); } ASSERT_OK(wfile->Close(IOOptions(), nullptr)); } // 2. Read file { std::unique_ptr file; ASSERT_OK(fs->NewRandomAccessFile(fname, FileOptions(), &file, nullptr)); IOOptions opts; std::vector io_handles(kNumSectors); std::vector reqs(kNumSectors); std::vector> data; std::vector vals; IOHandleDeleter del_fn; uint64_t offset = 0; // Initialize read requests for (size_t i = 0; i < kNumSectors; i++) { reqs[i].offset = offset; reqs[i].len = kSectorSize; data.emplace_back(NewAligned(kSectorSize, 0)); reqs[i].scratch = data.back().get(); vals.push_back(i); offset += kSectorSize; } // callback function passed to async read. std::function callback = [&](FSReadRequest& req, void* cb_arg) { assert(cb_arg != nullptr); size_t i = *(reinterpret_cast(cb_arg)); reqs[i].offset = req.offset; reqs[i].result = req.result; reqs[i].status = req.status; }; // Submit asynchronous read requests. for (size_t i = 0; i < kNumSectors; i++) { void* cb_arg = static_cast(&(vals[i])); ASSERT_OK(file->ReadAsync(reqs[i], opts, callback, cb_arg, &(io_handles[i]), &del_fn, nullptr)); } // Poll for the submitted requests. fs->Poll(io_handles, kNumSectors); // Check the status of read requests. for (size_t i = 0; i < kNumSectors; i++) { if (i % 2) { ASSERT_EQ(reqs[i].status, IOStatus::IOError()); } else { auto buf = NewAligned(kSectorSize * 8, static_cast(i + 1)); Slice expected_data(buf.get(), kSectorSize); ASSERT_EQ(reqs[i].offset, i * kSectorSize); ASSERT_OK(reqs[i].status); ASSERT_EQ(expected_data.ToString(), reqs[i].result.ToString()); } } // Delete io_handles. for (size_t i = 0; i < io_handles.size(); i++) { del_fn(io_handles[i]); } } } struct StaticDestructionTester { bool activated = false; ~StaticDestructionTester() { if (activated && !kMustFreeHeapAllocations) { // Make sure we can still call some things on default Env. std::string hostname; Env::Default()->GetHostNameString(&hostname); } } } static_destruction_tester; TEST(EnvTestMisc, StaticDestruction) { // Check for any crashes during static destruction. static_destruction_tester.activated = true; } } // namespace ROCKSDB_NAMESPACE int main(int argc, char** argv) { ROCKSDB_NAMESPACE::port::InstallStackTraceHandler(); ::testing::InitGoogleTest(&argc, argv); return RUN_ALL_TESTS(); }