// Copyright (c) Meta Platforms, Inc. and affiliates. // // This source code is licensed under both the GPLv2 (found in the // COPYING file in the root directory) and Apache 2.0 License // (found in the LICENSE.Apache file in the root directory). #include "table/compaction_merging_iterator.h" namespace ROCKSDB_NAMESPACE { class CompactionMergingIterator : public InternalIterator { public: CompactionMergingIterator( const InternalKeyComparator* comparator, InternalIterator** children, int n, bool is_arena_mode, std::vector< std::pair> range_tombstones) : is_arena_mode_(is_arena_mode), comparator_(comparator), current_(nullptr), minHeap_(CompactionHeapItemComparator(comparator_)), pinned_iters_mgr_(nullptr) { children_.resize(n); for (int i = 0; i < n; i++) { children_[i].level = i; children_[i].iter.Set(children[i]); assert(children_[i].type == HeapItem::ITERATOR); } assert(range_tombstones.size() == static_cast(n)); for (auto& p : range_tombstones) { range_tombstone_iters_.push_back(p.first); } pinned_heap_item_.resize(n); for (int i = 0; i < n; ++i) { if (range_tombstones[i].second) { // for LevelIterator *range_tombstones[i].second = &range_tombstone_iters_[i]; } pinned_heap_item_[i].level = i; pinned_heap_item_[i].type = HeapItem::DELETE_RANGE_START; } } void considerStatus(const Status& s) { if (!s.ok() && status_.ok()) { status_ = s; } } ~CompactionMergingIterator() override { // TODO: use unique_ptr for range_tombstone_iters_ for (auto child : range_tombstone_iters_) { delete child; } for (auto& child : children_) { child.iter.DeleteIter(is_arena_mode_); } status_.PermitUncheckedError(); } bool Valid() const override { return current_ != nullptr && status_.ok(); } Status status() const override { return status_; } void SeekToFirst() override; void Seek(const Slice& target) override; void Next() override; Slice key() const override { assert(Valid()); return current_->key(); } Slice value() const override { assert(Valid()); if (LIKELY(current_->type == HeapItem::ITERATOR)) { return current_->iter.value(); } else { return dummy_tombstone_val; } } // Here we simply relay MayBeOutOfLowerBound/MayBeOutOfUpperBound result // from current child iterator. Potentially as long as one of child iterator // report out of bound is not possible, we know current key is within bound. bool MayBeOutOfLowerBound() override { assert(Valid()); return current_->type == HeapItem::DELETE_RANGE_START || current_->iter.MayBeOutOfLowerBound(); } IterBoundCheck UpperBoundCheckResult() override { assert(Valid()); return current_->type == HeapItem::DELETE_RANGE_START ? IterBoundCheck::kUnknown : current_->iter.UpperBoundCheckResult(); } void SetPinnedItersMgr(PinnedIteratorsManager* pinned_iters_mgr) override { pinned_iters_mgr_ = pinned_iters_mgr; for (auto& child : children_) { child.iter.SetPinnedItersMgr(pinned_iters_mgr); } } bool IsDeleteRangeSentinelKey() const override { assert(Valid()); return current_->type == HeapItem::DELETE_RANGE_START; } // Compaction uses the above subset of InternalIterator interface. void SeekToLast() override { assert(false); } void SeekForPrev(const Slice&) override { assert(false); } void Prev() override { assert(false); } bool NextAndGetResult(IterateResult*) override { assert(false); return false; } bool IsKeyPinned() const override { assert(false); return false; } bool IsValuePinned() const override { assert(false); return false; } bool PrepareValue() override { assert(false); return false; } private: struct HeapItem { HeapItem() = default; IteratorWrapper iter; size_t level = 0; std::string tombstone_str; enum Type { ITERATOR, DELETE_RANGE_START }; Type type = ITERATOR; explicit HeapItem(size_t _level, InternalIteratorBase* _iter) : level(_level), type(Type::ITERATOR) { iter.Set(_iter); } void SetTombstoneForCompaction(const ParsedInternalKey&& pik) { tombstone_str.clear(); AppendInternalKey(&tombstone_str, pik); } [[nodiscard]] Slice key() const { return type == ITERATOR ? iter.key() : tombstone_str; } }; class CompactionHeapItemComparator { public: explicit CompactionHeapItemComparator( const InternalKeyComparator* comparator) : comparator_(comparator) {} bool operator()(HeapItem* a, HeapItem* b) const { int r = comparator_->Compare(a->key(), b->key()); // For each file, we assume all range tombstone start keys come before // its file boundary sentinel key (file's meta.largest key). // In the case when meta.smallest = meta.largest and range tombstone start // key is truncated at meta.smallest, the start key will have op_type = // kMaxValid to make it smaller (see TruncatedRangeDelIterator // constructor). The following assertion validates this assumption. assert(a->type == b->type || r != 0); return r > 0; } private: const InternalKeyComparator* comparator_; }; using CompactionMinHeap = BinaryHeap; bool is_arena_mode_; const InternalKeyComparator* comparator_; // HeapItem for all child point iterators. std::vector children_; // HeapItem for range tombstones. pinned_heap_item_[i] corresponds to the // current range tombstone from range_tombstone_iters_[i]. std::vector pinned_heap_item_; // range_tombstone_iters_[i] contains range tombstones in the sorted run that // corresponds to children_[i]. range_tombstone_iters_[i] == // nullptr means the sorted run of children_[i] does not have range // tombstones (or the current SSTable does not have range tombstones in the // case of LevelIterator). std::vector range_tombstone_iters_; // Used as value for range tombstone keys std::string dummy_tombstone_val{}; // Skip file boundary sentinel keys. void FindNextVisibleKey(); // top of minHeap_ HeapItem* current_; // If any of the children have non-ok status, this is one of them. Status status_; CompactionMinHeap minHeap_; PinnedIteratorsManager* pinned_iters_mgr_; // Process a child that is not in the min heap. // If valid, add to the min heap. Otherwise, check status. void AddToMinHeapOrCheckStatus(HeapItem*); HeapItem* CurrentForward() const { return !minHeap_.empty() ? minHeap_.top() : nullptr; } void InsertRangeTombstoneAtLevel(size_t level) { if (range_tombstone_iters_[level]->Valid()) { pinned_heap_item_[level].SetTombstoneForCompaction( range_tombstone_iters_[level]->start_key()); minHeap_.push(&pinned_heap_item_[level]); } } }; void CompactionMergingIterator::SeekToFirst() { minHeap_.clear(); status_ = Status::OK(); for (auto& child : children_) { child.iter.SeekToFirst(); AddToMinHeapOrCheckStatus(&child); } for (size_t i = 0; i < range_tombstone_iters_.size(); ++i) { if (range_tombstone_iters_[i]) { range_tombstone_iters_[i]->SeekToFirst(); InsertRangeTombstoneAtLevel(i); } } FindNextVisibleKey(); current_ = CurrentForward(); } void CompactionMergingIterator::Seek(const Slice& target) { minHeap_.clear(); status_ = Status::OK(); for (auto& child : children_) { child.iter.Seek(target); AddToMinHeapOrCheckStatus(&child); } ParsedInternalKey pik; ParseInternalKey(target, &pik, false /* log_err_key */) .PermitUncheckedError(); for (size_t i = 0; i < range_tombstone_iters_.size(); ++i) { if (range_tombstone_iters_[i]) { range_tombstone_iters_[i]->Seek(pik.user_key); // For compaction, output keys should all be after seek target. while (range_tombstone_iters_[i]->Valid() && comparator_->Compare(range_tombstone_iters_[i]->start_key(), pik) < 0) { range_tombstone_iters_[i]->Next(); } InsertRangeTombstoneAtLevel(i); } } FindNextVisibleKey(); current_ = CurrentForward(); } void CompactionMergingIterator::Next() { assert(Valid()); // For the heap modifications below to be correct, current_ must be the // current top of the heap. assert(current_ == CurrentForward()); // as the current points to the current record. move the iterator forward. if (current_->type == HeapItem::ITERATOR) { current_->iter.Next(); if (current_->iter.Valid()) { // current is still valid after the Next() call above. Call // replace_top() to restore the heap property. When the same child // iterator yields a sequence of keys, this is cheap. assert(current_->iter.status().ok()); minHeap_.replace_top(current_); } else { // current stopped being valid, remove it from the heap. considerStatus(current_->iter.status()); minHeap_.pop(); } } else { assert(current_->type == HeapItem::DELETE_RANGE_START); size_t level = current_->level; assert(range_tombstone_iters_[level]); range_tombstone_iters_[level]->Next(); if (range_tombstone_iters_[level]->Valid()) { pinned_heap_item_[level].SetTombstoneForCompaction( range_tombstone_iters_[level]->start_key()); minHeap_.replace_top(&pinned_heap_item_[level]); } else { minHeap_.pop(); } } FindNextVisibleKey(); current_ = CurrentForward(); } void CompactionMergingIterator::FindNextVisibleKey() { while (!minHeap_.empty()) { HeapItem* current = minHeap_.top(); // IsDeleteRangeSentinelKey() here means file boundary sentinel keys. if (current->type != HeapItem::ITERATOR || !current->iter.IsDeleteRangeSentinelKey()) { return; } // range tombstone start keys from the same SSTable should have been // exhausted assert(!range_tombstone_iters_[current->level] || !range_tombstone_iters_[current->level]->Valid()); // current->iter is a LevelIterator, and it enters a new SST file in the // Next() call here. current->iter.Next(); if (current->iter.Valid()) { assert(current->iter.status().ok()); minHeap_.replace_top(current); } else { considerStatus(current->iter.status()); minHeap_.pop(); } if (range_tombstone_iters_[current->level]) { InsertRangeTombstoneAtLevel(current->level); } } } void CompactionMergingIterator::AddToMinHeapOrCheckStatus(HeapItem* child) { if (child->iter.Valid()) { assert(child->iter.status().ok()); minHeap_.push(child); } else { considerStatus(child->iter.status()); } } InternalIterator* NewCompactionMergingIterator( const InternalKeyComparator* comparator, InternalIterator** children, int n, std::vector>& range_tombstone_iters, Arena* arena) { assert(n >= 0); if (n == 0) { return NewEmptyInternalIterator(arena); } else { if (arena == nullptr) { return new CompactionMergingIterator(comparator, children, n, false /* is_arena_mode */, range_tombstone_iters); } else { auto mem = arena->AllocateAligned(sizeof(CompactionMergingIterator)); return new (mem) CompactionMergingIterator(comparator, children, n, true /* is_arena_mode */, range_tombstone_iters); } } } } // namespace ROCKSDB_NAMESPACE