// Copyright (c) 2011-present, Facebook, Inc. All rights reserved. // This source code is licensed under both the GPLv2 (found in the // COPYING file in the root directory) and Apache 2.0 License // (found in the LICENSE.Apache file in the root directory). // // Copyright (c) 2011 The LevelDB Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. See the AUTHORS file for names of contributors. #include "rocksdb/comparator.h" #include #include #include #include #include #include "db/dbformat.h" #include "port/lang.h" #include "port/port.h" #include "rocksdb/convenience.h" #include "rocksdb/slice.h" #include "rocksdb/utilities/customizable_util.h" #include "rocksdb/utilities/object_registry.h" #include "util/coding.h" namespace ROCKSDB_NAMESPACE { namespace { class BytewiseComparatorImpl : public Comparator { public: BytewiseComparatorImpl() = default; static const char* kClassName() { return "leveldb.BytewiseComparator"; } const char* Name() const override { return kClassName(); } int Compare(const Slice& a, const Slice& b) const override { return a.compare(b); } bool Equal(const Slice& a, const Slice& b) const override { return a == b; } void FindShortestSeparator(std::string* start, const Slice& limit) const override { // Find length of common prefix size_t min_length = std::min(start->size(), limit.size()); size_t diff_index = 0; while ((diff_index < min_length) && ((*start)[diff_index] == limit[diff_index])) { diff_index++; } if (diff_index >= min_length) { // Do not shorten if one string is a prefix of the other } else { uint8_t start_byte = static_cast((*start)[diff_index]); uint8_t limit_byte = static_cast(limit[diff_index]); if (start_byte >= limit_byte) { // Cannot shorten since limit is smaller than start or start is // already the shortest possible. return; } assert(start_byte < limit_byte); if (diff_index < limit.size() - 1 || start_byte + 1 < limit_byte) { (*start)[diff_index]++; start->resize(diff_index + 1); } else { // v // A A 1 A A A // A A 2 // // Incrementing the current byte will make start bigger than limit, we // will skip this byte, and find the first non 0xFF byte in start and // increment it. diff_index++; while (diff_index < start->size()) { // Keep moving until we find the first non 0xFF byte to // increment it if (static_cast((*start)[diff_index]) < static_cast(0xff)) { (*start)[diff_index]++; start->resize(diff_index + 1); break; } diff_index++; } } assert(Compare(*start, limit) < 0); } } void FindShortSuccessor(std::string* key) const override { // Find first character that can be incremented size_t n = key->size(); for (size_t i = 0; i < n; i++) { const uint8_t byte = (*key)[i]; if (byte != static_cast(0xff)) { (*key)[i] = byte + 1; key->resize(i + 1); return; } } // *key is a run of 0xffs. Leave it alone. } bool IsSameLengthImmediateSuccessor(const Slice& s, const Slice& t) const override { if (s.size() != t.size() || s.size() == 0) { return false; } size_t diff_ind = s.difference_offset(t); // same slice if (diff_ind >= s.size()) { return false; } uint8_t byte_s = static_cast(s[diff_ind]); uint8_t byte_t = static_cast(t[diff_ind]); // first different byte must be consecutive, and remaining bytes must be // 0xff for s and 0x00 for t if (byte_s != uint8_t{0xff} && byte_s + 1 == byte_t) { for (size_t i = diff_ind + 1; i < s.size(); ++i) { byte_s = static_cast(s[i]); byte_t = static_cast(t[i]); if (byte_s != uint8_t{0xff} || byte_t != uint8_t{0x00}) { return false; } } return true; } else { return false; } } bool CanKeysWithDifferentByteContentsBeEqual() const override { return false; } using Comparator::CompareWithoutTimestamp; int CompareWithoutTimestamp(const Slice& a, bool /*a_has_ts*/, const Slice& b, bool /*b_has_ts*/) const override { return a.compare(b); } bool EqualWithoutTimestamp(const Slice& a, const Slice& b) const override { return a == b; } }; class ReverseBytewiseComparatorImpl : public BytewiseComparatorImpl { public: ReverseBytewiseComparatorImpl() = default; static const char* kClassName() { return "rocksdb.ReverseBytewiseComparator"; } const char* Name() const override { return kClassName(); } int Compare(const Slice& a, const Slice& b) const override { return -a.compare(b); } void FindShortestSeparator(std::string* start, const Slice& limit) const override { // Find length of common prefix size_t min_length = std::min(start->size(), limit.size()); size_t diff_index = 0; while ((diff_index < min_length) && ((*start)[diff_index] == limit[diff_index])) { diff_index++; } assert(diff_index <= min_length); if (diff_index == min_length) { // Do not shorten if one string is a prefix of the other // // We could handle cases like: // V // A A 2 X Y // A A 2 // in a similar way as BytewiseComparator::FindShortestSeparator(). // We keep it simple by not implementing it. We can come back to it // later when needed. } else { uint8_t start_byte = static_cast((*start)[diff_index]); uint8_t limit_byte = static_cast(limit[diff_index]); if (start_byte > limit_byte && diff_index < start->size() - 1) { // Case like // V // A A 3 A A // A A 1 B B // // or // v // A A 2 A A // A A 1 B B // In this case "AA2" will be good. #ifndef NDEBUG std::string old_start = *start; #endif start->resize(diff_index + 1); #ifndef NDEBUG assert(old_start >= *start); #endif assert(Slice(*start).compare(limit) > 0); } } } void FindShortSuccessor(std::string* /*key*/) const override { // Don't do anything for simplicity. } bool IsSameLengthImmediateSuccessor(const Slice& s, const Slice& t) const override { // Always returning false to prevent surfacing design flaws in // auto_prefix_mode (void)s, (void)t; return false; // "Correct" implementation: // return BytewiseComparatorImpl::IsSameLengthImmediateSuccessor(t, s); } bool CanKeysWithDifferentByteContentsBeEqual() const override { return false; } using Comparator::CompareWithoutTimestamp; int CompareWithoutTimestamp(const Slice& a, bool /*a_has_ts*/, const Slice& b, bool /*b_has_ts*/) const override { return -a.compare(b); } }; // Comparator with 64-bit integer timestamp. // We did not performance test this yet. template class ComparatorWithU64TsImpl : public Comparator { static_assert(std::is_base_of::value, "template type must be a inherited type of comparator"); public: explicit ComparatorWithU64TsImpl() : Comparator(/*ts_sz=*/sizeof(uint64_t)) { assert(cmp_without_ts_.timestamp_size() == 0); } static const char* kClassName() { static std::string class_name = kClassNameInternal(); return class_name.c_str(); } const char* Name() const override { return kClassName(); } // The comparator that compares the user key without timestamp part is treated // as the root comparator. const Comparator* GetRootComparator() const override { return &cmp_without_ts_; } void FindShortSuccessor(std::string*) const override {} void FindShortestSeparator(std::string*, const Slice&) const override {} int Compare(const Slice& a, const Slice& b) const override { int ret = CompareWithoutTimestamp(a, b); size_t ts_sz = timestamp_size(); if (ret != 0) { return ret; } // Compare timestamp. // For the same user key with different timestamps, larger (newer) timestamp // comes first. return -CompareTimestamp(ExtractTimestampFromUserKey(a, ts_sz), ExtractTimestampFromUserKey(b, ts_sz)); } using Comparator::CompareWithoutTimestamp; int CompareWithoutTimestamp(const Slice& a, bool a_has_ts, const Slice& b, bool b_has_ts) const override { const size_t ts_sz = timestamp_size(); assert(!a_has_ts || a.size() >= ts_sz); assert(!b_has_ts || b.size() >= ts_sz); Slice lhs = a_has_ts ? StripTimestampFromUserKey(a, ts_sz) : a; Slice rhs = b_has_ts ? StripTimestampFromUserKey(b, ts_sz) : b; return cmp_without_ts_.Compare(lhs, rhs); } int CompareTimestamp(const Slice& ts1, const Slice& ts2) const override { assert(ts1.size() == sizeof(uint64_t)); assert(ts2.size() == sizeof(uint64_t)); uint64_t lhs = DecodeFixed64(ts1.data()); uint64_t rhs = DecodeFixed64(ts2.data()); if (lhs < rhs) { return -1; } else if (lhs > rhs) { return 1; } else { return 0; } } private: static std::string kClassNameInternal() { std::stringstream ss; ss << TComparator::kClassName() << ".u64ts"; return ss.str(); } TComparator cmp_without_ts_; }; } // namespace const Comparator* BytewiseComparator() { STATIC_AVOID_DESTRUCTION(BytewiseComparatorImpl, bytewise); return &bytewise; } const Comparator* ReverseBytewiseComparator() { STATIC_AVOID_DESTRUCTION(ReverseBytewiseComparatorImpl, rbytewise); return &rbytewise; } const Comparator* BytewiseComparatorWithU64Ts() { STATIC_AVOID_DESTRUCTION(ComparatorWithU64TsImpl, comp_with_u64_ts); return &comp_with_u64_ts; } const Comparator* ReverseBytewiseComparatorWithU64Ts() { STATIC_AVOID_DESTRUCTION( ComparatorWithU64TsImpl, comp_with_u64_ts); return &comp_with_u64_ts; } Status DecodeU64Ts(const Slice& ts, uint64_t* int_ts) { if (ts.size() != sizeof(uint64_t)) { return Status::InvalidArgument("U64Ts timestamp size mismatch."); } *int_ts = DecodeFixed64(ts.data()); return Status::OK(); } Slice EncodeU64Ts(uint64_t ts, std::string* ts_buf) { char buf[sizeof(ts)]; EncodeFixed64(buf, ts); ts_buf->assign(buf, sizeof(buf)); return Slice(*ts_buf); } Slice MaxU64Ts() { static constexpr char kTsMax[] = "\xff\xff\xff\xff\xff\xff\xff\xff"; return Slice(kTsMax, sizeof(uint64_t)); } Slice MinU64Ts() { static constexpr char kTsMin[] = "\x00\x00\x00\x00\x00\x00\x00\x00"; return Slice(kTsMin, sizeof(uint64_t)); } static int RegisterBuiltinComparators(ObjectLibrary& library, const std::string& /*arg*/) { library.AddFactory( BytewiseComparatorImpl::kClassName(), [](const std::string& /*uri*/, std::unique_ptr* /*guard*/, std::string* /*errmsg*/) { return BytewiseComparator(); }); library.AddFactory( ReverseBytewiseComparatorImpl::kClassName(), [](const std::string& /*uri*/, std::unique_ptr* /*guard*/, std::string* /*errmsg*/) { return ReverseBytewiseComparator(); }); library.AddFactory( ComparatorWithU64TsImpl::kClassName(), [](const std::string& /*uri*/, std::unique_ptr* /*guard*/, std::string* /*errmsg*/) { return BytewiseComparatorWithU64Ts(); }); library.AddFactory( ComparatorWithU64TsImpl::kClassName(), [](const std::string& /*uri*/, std::unique_ptr* /*guard*/, std::string* /*errmsg*/) { return ReverseBytewiseComparatorWithU64Ts(); }); return 4; } Status Comparator::CreateFromString(const ConfigOptions& config_options, const std::string& value, const Comparator** result) { static std::once_flag once; std::call_once(once, [&]() { RegisterBuiltinComparators(*(ObjectLibrary::Default().get()), ""); }); std::string id; std::unordered_map opt_map; Status status = Customizable::GetOptionsMap(config_options, *result, value, &id, &opt_map); if (!status.ok()) { // GetOptionsMap failed return status; } if (id == BytewiseComparatorImpl::kClassName()) { *result = BytewiseComparator(); } else if (id == ReverseBytewiseComparatorImpl::kClassName()) { *result = ReverseBytewiseComparator(); } else if (id == ComparatorWithU64TsImpl::kClassName()) { *result = BytewiseComparatorWithU64Ts(); } else if (id == ComparatorWithU64TsImpl< ReverseBytewiseComparatorImpl>::kClassName()) { *result = ReverseBytewiseComparatorWithU64Ts(); } else if (value.empty()) { // No Id and no options. Clear the object *result = nullptr; return Status::OK(); } else if (id.empty()) { // We have no Id but have options. Not good return Status::NotSupported("Cannot reset object ", id); } else { status = config_options.registry->NewStaticObject(id, result); if (!status.ok()) { if (config_options.ignore_unsupported_options && status.IsNotSupported()) { return Status::OK(); } else { return status; } } else { Comparator* comparator = const_cast(*result); status = Customizable::ConfigureNewObject(config_options, comparator, opt_map); } } return status; } } // namespace ROCKSDB_NAMESPACE