/* -*- mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- */
// vim: ft=cpp:expandtab:ts=8:sw=4:softtabstop=4:
#ident "$Id$"
/*======
This file is part of PerconaFT.
Copyright (c) 2006, 2015, Percona and/or its affiliates. All rights reserved.
PerconaFT is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License, version 2,
as published by the Free Software Foundation.
PerconaFT is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with PerconaFT. If not, see .
----------------------------------------
PerconaFT is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License, version 3,
as published by the Free Software Foundation.
PerconaFT is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Affero General Public License for more details.
You should have received a copy of the GNU Affero General Public License
along with PerconaFT. If not, see .
----------------------------------------
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
======= */
#ident \
"Copyright (c) 2006, 2015, Percona and/or its affiliates. All rights reserved."
#pragma once
#include
#include "toku_portability.h"
/* Percona memory allocation functions and macros.
* These are functions for malloc and free */
int toku_memory_startup(void) __attribute__((constructor));
void toku_memory_shutdown(void) __attribute__((destructor));
/* Generally: errno is set to 0 or a value to indicate problems. */
// Everything should call toku_malloc() instead of malloc(), and toku_calloc()
// instead of calloc() That way the tests can can, e.g., replace the malloc
// function using toku_set_func_malloc().
void *toku_calloc(size_t nmemb, size_t size)
__attribute__((__visibility__("default")));
void *toku_xcalloc(size_t nmemb, size_t size)
__attribute__((__visibility__("default")));
void *toku_malloc(size_t size) __attribute__((__visibility__("default")));
void *toku_malloc_aligned(size_t alignment, size_t size)
__attribute__((__visibility__("default")));
// xmalloc aborts instead of return NULL if we run out of memory
void *toku_xmalloc(size_t size) __attribute__((__visibility__("default")));
void *toku_xrealloc(void *, size_t size)
__attribute__((__visibility__("default")));
void *toku_xmalloc_aligned(size_t alignment, size_t size)
__attribute__((__visibility__("default")));
// Effect: Perform a os_malloc_aligned(size) with the additional property that
// the returned pointer is a multiple of ALIGNMENT.
// Fail with a resource_assert if the allocation fails (don't return an error
// code). If the alloc_aligned function has been set then call it instead.
// Requires: alignment is a power of two.
void toku_free(void *) __attribute__((__visibility__("default")));
size_t toku_malloc_usable_size(void *p)
__attribute__((__visibility__("default")));
/* MALLOC is a macro that helps avoid a common error:
* Suppose I write
* struct foo *x = malloc(sizeof(struct foo));
* That works fine. But if I change it to this, I've probably made an mistake:
* struct foo *x = malloc(sizeof(struct bar));
* It can get worse, since one might have something like
* struct foo *x = malloc(sizeof(struct foo *))
* which looks reasonable, but it allocoates enough to hold a pointer instead of
* the amount needed for the struct. So instead, write struct foo *MALLOC(x);
* and you cannot go wrong.
*/
#define MALLOC(v) CAST_FROM_VOIDP(v, toku_malloc(sizeof(*v)))
/* MALLOC_N is like calloc(Except no 0ing of data): It makes an array. Write
* int *MALLOC_N(5,x);
* to make an array of 5 integers.
*/
#define MALLOC_N(n, v) CAST_FROM_VOIDP(v, toku_malloc((n) * sizeof(*v)))
#define MALLOC_N_ALIGNED(align, n, v) \
CAST_FROM_VOIDP(v, toku_malloc_aligned((align), (n) * sizeof(*v)))
// CALLOC_N is like calloc with auto-figuring out size of members
#define CALLOC_N(n, v) CAST_FROM_VOIDP(v, toku_calloc((n), sizeof(*v)))
#define CALLOC(v) CALLOC_N(1, v)
// XMALLOC macros are like MALLOC except they abort if the operation fails
#define XMALLOC(v) CAST_FROM_VOIDP(v, toku_xmalloc(sizeof(*v)))
#define XMALLOC_N(n, v) CAST_FROM_VOIDP(v, toku_xmalloc((n) * sizeof(*v)))
#define XCALLOC_N(n, v) CAST_FROM_VOIDP(v, toku_xcalloc((n), (sizeof(*v))))
#define XCALLOC(v) XCALLOC_N(1, v)
#define XREALLOC(v, s) CAST_FROM_VOIDP(v, toku_xrealloc(v, s))
#define XREALLOC_N(n, v) CAST_FROM_VOIDP(v, toku_xrealloc(v, (n) * sizeof(*v)))
#define XMALLOC_N_ALIGNED(align, n, v) \
CAST_FROM_VOIDP(v, toku_xmalloc_aligned((align), (n) * sizeof(*v)))
#define XMEMDUP(dst, src) CAST_FROM_VOIDP(dst, toku_xmemdup(src, sizeof(*src)))
#define XMEMDUP_N(dst, src, len) CAST_FROM_VOIDP(dst, toku_xmemdup(src, len))
// ZERO_ARRAY writes zeroes to a stack-allocated array
#define ZERO_ARRAY(o) \
do { \
memset((o), 0, sizeof(o)); \
} while (0)
// ZERO_STRUCT writes zeroes to a stack-allocated struct
#define ZERO_STRUCT(o) \
do { \
memset(&(o), 0, sizeof(o)); \
} while (0)
/* Copy memory. Analogous to strdup() */
void *toku_memdup(const void *v, size_t len);
/* Toku-version of strdup. Use this so that it calls toku_malloc() */
char *toku_strdup(const char *s) __attribute__((__visibility__("default")));
/* Toku-version of strndup. Use this so that it calls toku_malloc() */
char *toku_strndup(const char *s, size_t n)
__attribute__((__visibility__("default")));
/* Copy memory. Analogous to strdup() Crashes instead of returning NULL */
void *toku_xmemdup(const void *v, size_t len)
__attribute__((__visibility__("default")));
/* Toku-version of strdup. Use this so that it calls toku_xmalloc() Crashes
* instead of returning NULL */
char *toku_xstrdup(const char *s) __attribute__((__visibility__("default")));
void toku_malloc_cleanup(
void); /* Before exiting, call this function to free up any internal data
structures from toku_malloc. Otherwise valgrind will complain of
memory leaks. */
/* Check to see if everything malloc'd was free. Might be a no-op depending on
* how memory.c is configured. */
void toku_memory_check_all_free(void);
/* Check to see if memory is "sane". Might be a no-op. Probably better to
* simply use valgrind. */
void toku_do_memory_check(void);
typedef void *(*malloc_fun_t)(size_t);
typedef void (*free_fun_t)(void *);
typedef void *(*realloc_fun_t)(void *, size_t);
typedef void *(*malloc_aligned_fun_t)(size_t /*alignment*/, size_t /*size*/);
typedef void *(*realloc_aligned_fun_t)(size_t /*alignment*/, void * /*pointer*/,
size_t /*size*/);
void toku_set_func_malloc(malloc_fun_t f);
void toku_set_func_xmalloc_only(malloc_fun_t f);
void toku_set_func_malloc_only(malloc_fun_t f);
void toku_set_func_realloc(realloc_fun_t f);
void toku_set_func_xrealloc_only(realloc_fun_t f);
void toku_set_func_realloc_only(realloc_fun_t f);
void toku_set_func_free(free_fun_t f);
typedef struct memory_status {
uint64_t malloc_count; // number of malloc operations
uint64_t free_count; // number of free operations
uint64_t realloc_count; // number of realloc operations
uint64_t malloc_fail; // number of malloc operations that failed
uint64_t realloc_fail; // number of realloc operations that failed
uint64_t requested; // number of bytes requested
uint64_t used; // number of bytes used (requested + overhead), obtained from
// malloc_usable_size()
uint64_t freed; // number of bytes freed;
uint64_t max_requested_size; // largest attempted allocation size
uint64_t last_failed_size; // size of the last failed allocation attempt
volatile uint64_t
max_in_use; // maximum memory footprint (used - freed), approximate (not
// worth threadsafety overhead for exact)
const char *mallocator_version;
uint64_t mmap_threshold;
} LOCAL_MEMORY_STATUS_S, *LOCAL_MEMORY_STATUS;
void toku_memory_get_status(LOCAL_MEMORY_STATUS s);
// Effect: Like toku_memory_footprint, except instead of passing p,
// we pass toku_malloc_usable_size(p).
size_t toku_memory_footprint_given_usable_size(size_t touched, size_t usable);
// Effect: Return an estimate how how much space an object is using, possibly by
// using toku_malloc_usable_size(p).
// If p is NULL then returns 0.
size_t toku_memory_footprint(void *p, size_t touched);