/* * This file was originally licensed * under Apache 2.0 (https://www.apache.org/licenses/LICENSE-2.0.html) or * public domain at https://github.com/pq-crystals/kyber/blob/master/ref * * We choose * CC0 1.0 Universal or the following MIT License for this file. * * MIT License * * Copyright (c) 2023: Hanno Becker, Vincent Hwang, Matthias J. Kannwischer, Bo-Yin Yang, and Shang-Yi Yang * * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include #include "params.h" #include "poly.h" #include "ntt.h" #include "reduce.h" #include "cbd.h" #include "symmetric.h" /************************************************* * Name: poly_compress * * Description: Compression and subsequent serialization of a polynomial * * Arguments: - uint8_t *r: pointer to output byte array * (of length KYBER_POLYCOMPRESSEDBYTES) * - const poly *a: pointer to input polynomial **************************************************/ void poly_compress(uint8_t r[KYBER_POLYCOMPRESSEDBYTES], const int16_t a[KYBER_N]) { unsigned int i, j; int16_t u; uint8_t t[8]; for (i = 0; i < KYBER_N / 8; i++) { for (j = 0; j < 8; j++) { // map to positive standard representatives u = a[8 * i + j]; u += (u >> 15) & KYBER_Q; t[j] = ((((uint16_t)u << 4) + KYBER_Q / 2) / KYBER_Q) & 15; } r[0] = t[0] | (t[1] << 4); r[1] = t[2] | (t[3] << 4); r[2] = t[4] | (t[5] << 4); r[3] = t[6] | (t[7] << 4); r += 4; } } /************************************************* * Name: poly_decompress * * Description: De-serialization and subsequent decompression of a polynomial; * approximate inverse of poly_compress * * Arguments: - poly *r: pointer to output polynomial * - const uint8_t *a: pointer to input byte array * (of length KYBER_POLYCOMPRESSEDBYTES bytes) **************************************************/ void poly_decompress(int16_t r[KYBER_N], const uint8_t a[KYBER_POLYCOMPRESSEDBYTES]) { unsigned int i; for (i = 0; i < KYBER_N / 2; i++) { r[2 * i + 0] = (((uint16_t)(a[0] & 15) * KYBER_Q) + 8) >> 4; r[2 * i + 1] = (((uint16_t)(a[0] >> 4) * KYBER_Q) + 8) >> 4; a += 1; } } /************************************************* * Name: poly_tobytes * * Description: Serialization of a polynomial * * Arguments: - uint8_t *r: pointer to output byte array * (needs space for KYBER_POLYBYTES bytes) * - const poly *a: pointer to input polynomial **************************************************/ void poly_tobytes(uint8_t r[KYBER_POLYBYTES], const int16_t a[KYBER_N]) { unsigned int i; uint16_t t0, t1; for (i = 0; i < KYBER_N / 2; i++) { // map to positive standard representatives t0 = a[2 * i]; t0 += ((int16_t)t0 >> 15) & KYBER_Q; t1 = a[2 * i + 1]; t1 += ((int16_t)t1 >> 15) & KYBER_Q; r[3 * i + 0] = (t0 >> 0); r[3 * i + 1] = (t0 >> 8) | (t1 << 4); r[3 * i + 2] = (t1 >> 4); } } /************************************************* * Name: poly_frombytes * * Description: De-serialization of a polynomial; * inverse of poly_tobytes * * Arguments: - poly *r: pointer to output polynomial * - const uint8_t *a: pointer to input byte array * (of KYBER_POLYBYTES bytes) **************************************************/ void poly_frombytes(int16_t r[KYBER_N], const uint8_t a[KYBER_POLYBYTES]) { uint8x16x3_t neon_buf; uint16x8x4_t tmp; int16x8x4_t value; uint16x8_t const_0xfff; const_0xfff = vdupq_n_u16(0xfff); unsigned int i, j = 0; for (i = 0; i < KYBER_POLYBYTES; i += 48) { neon_buf = vld3q_u8(&a[i]); // Val0: 0-1 | 3-4 | 6-7| 9-10 tmp.val[0] = (uint16x8_t)vzip1q_u8(neon_buf.val[0], neon_buf.val[1]); tmp.val[1] = (uint16x8_t)vzip2q_u8(neon_buf.val[0], neon_buf.val[1]); tmp.val[0] = vandq_u16(tmp.val[0], const_0xfff); tmp.val[1] = vandq_u16(tmp.val[1], const_0xfff); // Val1: 1-2 | 4-5 | 7-8 | 10-11 tmp.val[2] = (uint16x8_t)vzip1q_u8(neon_buf.val[1], neon_buf.val[2]); tmp.val[3] = (uint16x8_t)vzip2q_u8(neon_buf.val[1], neon_buf.val[2]); tmp.val[2] = vshrq_n_u16(tmp.val[2], 4); tmp.val[3] = vshrq_n_u16(tmp.val[3], 4); // Final value value.val[0] = (int16x8_t)vzip1q_u16(tmp.val[0], tmp.val[2]); value.val[1] = (int16x8_t)vzip2q_u16(tmp.val[0], tmp.val[2]); value.val[2] = (int16x8_t)vzip1q_u16(tmp.val[1], tmp.val[3]); value.val[3] = (int16x8_t)vzip2q_u16(tmp.val[1], tmp.val[3]); vst1q_s16_x4(r + j, value); j += 32; } } /************************************************* * Name: poly_frommsg * * Description: Convert 32-byte message to polynomial * * Arguments: - poly *r: pointer to output polynomial * - const uint8_t *msg: pointer to input message **************************************************/ void poly_frommsg(int16_t r[KYBER_N], const uint8_t msg[KYBER_INDCPA_MSGBYTES]) { unsigned int i, j; int16_t mask; for (i = 0; i < KYBER_N / 8; i++) { for (j = 0; j < 8; j++) { mask = -(int16_t)((msg[i] >> j) & 1); r[8 * i + j] = mask & ((KYBER_Q + 1) / 2); } } } /************************************************* * Name: poly_tomsg * * Description: Convert polynomial to 32-byte message * * Arguments: - uint8_t *msg: pointer to output message * - const poly *a: pointer to input polynomial **************************************************/ void poly_tomsg(uint8_t msg[KYBER_INDCPA_MSGBYTES], const int16_t a[KYBER_N]) { unsigned int i, j; uint16_t t; for (i = 0; i < KYBER_N / 8; i++) { msg[i] = 0; for (j = 0; j < 8; j++) { t = a[8 * i + j]; t += ((int16_t)t >> 15) & KYBER_Q; t = (((t << 1) + KYBER_Q / 2) / KYBER_Q) & 1; msg[i] |= t << j; } } }