#define syndrome_asm CRYPTO_NAMESPACE(syndrome_asm) #define _syndrome_asm _CRYPTO_NAMESPACE(syndrome_asm) /* This file is for Niederreiter encryption */ #include "util.h" #include "int32_sort.h" #include "params.h" #include "randombytes.h" #include "crypto_declassify.h" #include "crypto_uint32.h" #include /* include last because of conflict with unistd.h's encrypt function */ #include "encrypt.h" static inline crypto_uint32 uint32_is_equal_declassify(uint32_t t, uint32_t u) { crypto_uint32 mask = crypto_uint32_equal_mask(t, u); crypto_declassify(&mask, sizeof mask); return mask; } /* input: public key pk, error vector e */ /* output: syndrome s */ extern void syndrome_asm(unsigned char *s, const unsigned char *pk, unsigned char *e); /* output: e, an error vector of weight t */ static void gen_e(unsigned char *e) { int i, j, eq; int32_t ind[ SYS_T ]; // can also use uint16 or int16 unsigned char bytes[ SYS_T * 2 ]; uint64_t e_int[ SYS_N / 64 ]; uint64_t one = 1; uint64_t mask; uint64_t val[ SYS_T ]; while (1) { randombytes(bytes, sizeof(bytes)); for (i = 0; i < SYS_T; i++) { ind[i] = load_gf(bytes + i * 2); } // check for repetition int32_sort(ind, SYS_T); eq = 0; for (i = 1; i < SYS_T; i++) { if (uint32_is_equal_declassify(ind[i - 1], ind[i])) { eq = 1; } } if (eq == 0) { break; } } for (j = 0; j < SYS_T; j++) { val[j] = one << (ind[j] & 63); } for (i = 0; i < SYS_N / 64; i++) { e_int[i] = 0; for (j = 0; j < SYS_T; j++) { mask = i ^ (ind[j] >> 6); mask -= 1; mask >>= 63; mask = -mask; e_int[i] |= val[j] & mask; } } for (i = 0; i < SYS_N / 64; i++) { store8(e + i * 8, e_int[i]); } } /* input: public key pk */ /* output: error vector e, syndrome s */ void encrypt(unsigned char *s, const unsigned char *pk, unsigned char *e) { gen_e(e); syndrome_asm(s, pk, e); }