/* This file is for public-key generation */ #include #include #include #include #include "controlbits.h" #include "benes.h" #include "crypto_declassify.h" #include "crypto_uint64.h" #include "params.h" #include "pk_gen.h" #include "root.h" #include "uint64_sort.h" #include "util.h" static crypto_uint64 uint64_is_equal_declassify(uint64_t t, uint64_t u) { crypto_uint64 mask = crypto_uint64_equal_mask(t, u); crypto_declassify(&mask, sizeof mask); return mask; } static crypto_uint64 uint64_is_zero_declassify(uint64_t t) { crypto_uint64 mask = crypto_uint64_zero_mask(t); crypto_declassify(&mask, sizeof mask); return mask; } /* input: secret key sk */ /* output: public key pk */ int pk_gen(unsigned char *pk, unsigned char *sk, const uint32_t *perm, int16_t *pi) { int i, j, k; int row, c; uint64_t buf[ 1 << GFBITS ]; unsigned char mat[ PK_NROWS ][ SYS_N / 8 ]; unsigned char mask; unsigned char b; gf g[ SYS_T + 1 ]; // Goppa polynomial gf L[ SYS_N ]; // support gf inv[ SYS_N ]; // g[ SYS_T ] = 1; for (i = 0; i < SYS_T; i++) { g[i] = load_gf(sk); sk += 2; } for (i = 0; i < (1 << GFBITS); i++) { buf[i] = perm[i]; buf[i] <<= 31; buf[i] |= i; } uint64_sort(buf, 1 << GFBITS); for (i = 1; i < (1 << GFBITS); i++) { if (uint64_is_equal_declassify(buf[i - 1] >> 31, buf[i] >> 31)) { return -1; } } for (i = 0; i < (1 << GFBITS); i++) { pi[i] = buf[i] & GFMASK; } for (i = 0; i < SYS_N; i++) { L[i] = bitrev(pi[i]); } // filling the matrix root(inv, g, L); for (i = 0; i < SYS_N; i++) { inv[i] = gf_inv(inv[i]); } for (i = 0; i < PK_NROWS; i++) { for (j = 0; j < SYS_N / 8; j++) { mat[i][j] = 0; } } for (i = 0; i < SYS_T; i++) { for (j = 0; j < SYS_N; j += 8) { for (k = 0; k < GFBITS; k++) { b = (inv[j + 7] >> k) & 1; b <<= 1; b |= (inv[j + 6] >> k) & 1; b <<= 1; b |= (inv[j + 5] >> k) & 1; b <<= 1; b |= (inv[j + 4] >> k) & 1; b <<= 1; b |= (inv[j + 3] >> k) & 1; b <<= 1; b |= (inv[j + 2] >> k) & 1; b <<= 1; b |= (inv[j + 1] >> k) & 1; b <<= 1; b |= (inv[j + 0] >> k) & 1; mat[ i * GFBITS + k ][ j / 8 ] = b; } } for (j = 0; j < SYS_N; j++) { inv[j] = gf_mul(inv[j], L[j]); } } // gaussian elimination for (i = 0; i < (PK_NROWS + 7) / 8; i++) { for (j = 0; j < 8; j++) { row = i * 8 + j; if (row >= PK_NROWS) { break; } for (k = row + 1; k < PK_NROWS; k++) { mask = mat[ row ][ i ] ^ mat[ k ][ i ]; mask >>= j; mask &= 1; mask = -mask; for (c = 0; c < SYS_N / 8; c++) { mat[ row ][ c ] ^= mat[ k ][ c ] & mask; } } if ( uint64_is_zero_declassify((mat[ row ][ i ] >> j) & 1) ) { // return if not systematic return -1; } for (k = 0; k < PK_NROWS; k++) { if (k != row) { mask = mat[ k ][ i ] >> j; mask &= 1; mask = -mask; for (c = 0; c < SYS_N / 8; c++) { mat[ k ][ c ] ^= mat[ row ][ c ] & mask; } } } } } for (i = 0; i < PK_NROWS; i++) { memcpy(pk + i * PK_ROW_BYTES, mat[i] + PK_NROWS / 8, PK_ROW_BYTES); } return 0; }