#include "ntt.h" #include "params.h" #include "reduce.h" #include /* Code to generate PQCLEAN_MLKEM512_CLEAN_zetas and zetas_inv used in the number-theoretic transform: #define KYBER_ROOT_OF_UNITY 17 static const uint8_t tree[128] = { 0, 64, 32, 96, 16, 80, 48, 112, 8, 72, 40, 104, 24, 88, 56, 120, 4, 68, 36, 100, 20, 84, 52, 116, 12, 76, 44, 108, 28, 92, 60, 124, 2, 66, 34, 98, 18, 82, 50, 114, 10, 74, 42, 106, 26, 90, 58, 122, 6, 70, 38, 102, 22, 86, 54, 118, 14, 78, 46, 110, 30, 94, 62, 126, 1, 65, 33, 97, 17, 81, 49, 113, 9, 73, 41, 105, 25, 89, 57, 121, 5, 69, 37, 101, 21, 85, 53, 117, 13, 77, 45, 109, 29, 93, 61, 125, 3, 67, 35, 99, 19, 83, 51, 115, 11, 75, 43, 107, 27, 91, 59, 123, 7, 71, 39, 103, 23, 87, 55, 119, 15, 79, 47, 111, 31, 95, 63, 127 }; void init_ntt() { unsigned int i; int16_t tmp[128]; tmp[0] = MONT; for(i=1;i<128;i++) tmp[i] = fqmul(tmp[i-1],MONT*KYBER_ROOT_OF_UNITY % KYBER_Q); for(i=0;i<128;i++) { PQCLEAN_MLKEM512_CLEAN_zetas[i] = tmp[tree[i]]; if(PQCLEAN_MLKEM512_CLEAN_zetas[i] > KYBER_Q/2) PQCLEAN_MLKEM512_CLEAN_zetas[i] -= KYBER_Q; if(PQCLEAN_MLKEM512_CLEAN_zetas[i] < -KYBER_Q/2) PQCLEAN_MLKEM512_CLEAN_zetas[i] += KYBER_Q; } } */ const int16_t PQCLEAN_MLKEM512_CLEAN_zetas[128] = { -1044, -758, -359, -1517, 1493, 1422, 287, 202, -171, 622, 1577, 182, 962, -1202, -1474, 1468, 573, -1325, 264, 383, -829, 1458, -1602, -130, -681, 1017, 732, 608, -1542, 411, -205, -1571, 1223, 652, -552, 1015, -1293, 1491, -282, -1544, 516, -8, -320, -666, -1618, -1162, 126, 1469, -853, -90, -271, 830, 107, -1421, -247, -951, -398, 961, -1508, -725, 448, -1065, 677, -1275, -1103, 430, 555, 843, -1251, 871, 1550, 105, 422, 587, 177, -235, -291, -460, 1574, 1653, -246, 778, 1159, -147, -777, 1483, -602, 1119, -1590, 644, -872, 349, 418, 329, -156, -75, 817, 1097, 603, 610, 1322, -1285, -1465, 384, -1215, -136, 1218, -1335, -874, 220, -1187, -1659, -1185, -1530, -1278, 794, -1510, -854, -870, 478, -108, -308, 996, 991, 958, -1460, 1522, 1628 }; /************************************************* * Name: fqmul * * Description: Multiplication followed by Montgomery reduction * * Arguments: - int16_t a: first factor * - int16_t b: second factor * * Returns 16-bit integer congruent to a*b*R^{-1} mod q **************************************************/ static int16_t fqmul(int16_t a, int16_t b) { return PQCLEAN_MLKEM512_CLEAN_montgomery_reduce((int32_t)a * b); } /************************************************* * Name: PQCLEAN_MLKEM512_CLEAN_ntt * * Description: Inplace number-theoretic transform (NTT) in Rq. * input is in standard order, output is in bitreversed order * * Arguments: - int16_t r[256]: pointer to input/output vector of elements of Zq **************************************************/ void PQCLEAN_MLKEM512_CLEAN_ntt(int16_t r[256]) { unsigned int len, start, j, k; int16_t t, zeta; k = 1; for (len = 128; len >= 2; len >>= 1) { for (start = 0; start < 256; start = j + len) { zeta = PQCLEAN_MLKEM512_CLEAN_zetas[k++]; for (j = start; j < start + len; j++) { t = fqmul(zeta, r[j + len]); r[j + len] = r[j] - t; r[j] = r[j] + t; } } } } /************************************************* * Name: invntt_tomont * * Description: Inplace inverse number-theoretic transform in Rq and * multiplication by Montgomery factor 2^16. * Input is in bitreversed order, output is in standard order * * Arguments: - int16_t r[256]: pointer to input/output vector of elements of Zq **************************************************/ void PQCLEAN_MLKEM512_CLEAN_invntt(int16_t r[256]) { unsigned int start, len, j, k; int16_t t, zeta; const int16_t f = 1441; // mont^2/128 k = 127; for (len = 2; len <= 128; len <<= 1) { for (start = 0; start < 256; start = j + len) { zeta = PQCLEAN_MLKEM512_CLEAN_zetas[k--]; for (j = start; j < start + len; j++) { t = r[j]; r[j] = PQCLEAN_MLKEM512_CLEAN_barrett_reduce(t + r[j + len]); r[j + len] = r[j + len] - t; r[j + len] = fqmul(zeta, r[j + len]); } } } for (j = 0; j < 256; j++) { r[j] = fqmul(r[j], f); } } /************************************************* * Name: PQCLEAN_MLKEM512_CLEAN_basemul * * Description: Multiplication of polynomials in Zq[X]/(X^2-zeta) * used for multiplication of elements in Rq in NTT domain * * Arguments: - int16_t r[2]: pointer to the output polynomial * - const int16_t a[2]: pointer to the first factor * - const int16_t b[2]: pointer to the second factor * - int16_t zeta: integer defining the reduction polynomial **************************************************/ void PQCLEAN_MLKEM512_CLEAN_basemul(int16_t r[2], const int16_t a[2], const int16_t b[2], int16_t zeta) { r[0] = fqmul(a[1], b[1]); r[0] = fqmul(r[0], zeta); r[0] += fqmul(a[0], b[0]); r[1] = fqmul(a[0], b[1]); r[1] += fqmul(a[1], b[0]); }