/* * Falcon signature generation. * * ==========================(LICENSE BEGIN)============================ * * Copyright (c) 2017-2019 Falcon Project * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sublicense, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY * CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * * ===========================(LICENSE END)============================= * * @author Thomas Pornin */ #include "inner.h" #include "macrof.h" #include "macrofx4.h" #include "util.h" #include #include /* =================================================================== */ /* * Compute degree N from logarithm 'logn'. */ #define MKN(logn) ((size_t)1 << (logn)) /* =================================================================== */ /* * Binary case: * N = 2^logn * phi = X^N+1 */ /* * Get the size of the LDL tree for an input with polynomials of size * 2^logn. The size is expressed in the number of elements. */ static inline unsigned ffLDL_treesize(unsigned logn) { /* * For logn = 0 (polynomials are constant), the "tree" is a * single element. Otherwise, the tree node has size 2^logn, and * has two child trees for size logn-1 each. Thus, treesize s() * must fulfill these two relations: * * s(0) = 1 * s(logn) = (2^logn) + 2*s(logn-1) */ return (logn + 1) << logn; } /* * Inner function for ffLDL_fft(). It expects the matrix to be both * auto-adjoint and quasicyclic; also, it uses the source operands * as modifiable temporaries. * * tmp[] must have room for at least one polynomial. */ static void ffLDL_fft_inner(fpr *restrict tree, fpr *restrict g0, fpr *restrict g1, unsigned logn, fpr *restrict tmp) { size_t n, hn; n = MKN(logn); if (n == 1) { tree[0] = g0[0]; return; } hn = n >> 1; /* * The LDL decomposition yields L (which is written in the tree) * and the diagonal of D. Since d00 = g0, we just write d11 * into tmp. */ PQCLEAN_FALCONPADDED512_AARCH64_poly_LDLmv_fft(tmp, tree, g0, g1, g0, logn); /* * Split d00 (currently in g0) and d11 (currently in tmp). We * reuse g0 and g1 as temporary storage spaces: * d00 splits into g1, g1+hn * d11 splits into g0, g0+hn */ PQCLEAN_FALCONPADDED512_AARCH64_poly_split_fft(g1, g1 + hn, g0, logn); PQCLEAN_FALCONPADDED512_AARCH64_poly_split_fft(g0, g0 + hn, tmp, logn); /* * Each split result is the first row of a new auto-adjoint * quasicyclic matrix for the next recursive step. */ ffLDL_fft_inner(tree + n, g1, g1 + hn, logn - 1, tmp); ffLDL_fft_inner(tree + n + ffLDL_treesize(logn - 1), g0, g0 + hn, logn - 1, tmp); } /* * Compute the ffLDL tree of an auto-adjoint matrix G. The matrix * is provided as three polynomials (FFT representation). * * The "tree" array is filled with the computed tree, of size * (logn+1)*(2^logn) elements (see ffLDL_treesize()). * * Input arrays MUST NOT overlap, except possibly the three unmodified * arrays g00, g01 and g11. tmp[] should have room for at least three * polynomials of 2^logn elements each. */ static void ffLDL_fft(fpr *restrict tree, const fpr *restrict g00, const fpr *restrict g01, const fpr *restrict g11, unsigned logn, fpr *restrict tmp) { size_t n, hn; fpr *d00, *d11; n = MKN(logn); if (n == 1) { tree[0] = g00[0]; return; } hn = n >> 1; d00 = tmp; d11 = tmp + n; tmp += n << 1; memcpy(d00, g00, n * sizeof * g00); PQCLEAN_FALCONPADDED512_AARCH64_poly_LDLmv_fft(d11, tree, g00, g01, g11, logn); PQCLEAN_FALCONPADDED512_AARCH64_poly_split_fft(tmp, tmp + hn, d00, logn); PQCLEAN_FALCONPADDED512_AARCH64_poly_split_fft(d00, d00 + hn, d11, logn); memcpy(d11, tmp, n * sizeof * tmp); ffLDL_fft_inner(tree + n, d11, d11 + hn, logn - 1, tmp); ffLDL_fft_inner(tree + n + ffLDL_treesize(logn - 1), d00, d00 + hn, logn - 1, tmp); } /* * Normalize an ffLDL tree: each leaf of value x is replaced with * sigma / sqrt(x). */ static void ffLDL_binary_normalize(fpr *tree, unsigned orig_logn, unsigned logn) { /* * TODO: make an iterative version. */ size_t n; n = MKN(logn); if (n == 1) { /* * We actually store in the tree leaf the inverse of * the value mandated by the specification: this * saves a division both here and in the sampler. */ tree[0] = fpr_mul(fpr_sqrt(tree[0]), fpr_inv_sigma_9); } else { ffLDL_binary_normalize(tree + n, orig_logn, logn - 1); ffLDL_binary_normalize(tree + n + ffLDL_treesize(logn - 1), orig_logn, logn - 1); } } /* =================================================================== */ /* * The expanded private key contains: * - The B0 matrix (four elements) * - The ffLDL tree */ static inline size_t skoff_b00(unsigned logn) { (void)logn; return 0; } static inline size_t skoff_b01(unsigned logn) { return MKN(logn); } static inline size_t skoff_b10(unsigned logn) { return 2 * MKN(logn); } static inline size_t skoff_b11(unsigned logn) { return 3 * MKN(logn); } static inline size_t skoff_tree(unsigned logn) { return 4 * MKN(logn); } /* see inner.h */ void PQCLEAN_FALCONPADDED512_AARCH64_expand_privkey(fpr *restrict expanded_key, const int8_t *f, const int8_t *g, const int8_t *F, const int8_t *G, uint8_t *restrict tmp) { fpr *rf, *rg, *rF, *rG; fpr *b00, *b01, *b10, *b11; fpr *g00, *g01, *g11, *gxx; fpr *tree; b00 = expanded_key + skoff_b00(FALCON_LOGN); b01 = expanded_key + skoff_b01(FALCON_LOGN); b10 = expanded_key + skoff_b10(FALCON_LOGN); b11 = expanded_key + skoff_b11(FALCON_LOGN); tree = expanded_key + skoff_tree(FALCON_LOGN); /* * We load the private key elements directly into the B0 matrix, * since B0 = [[g, -f], [G, -F]]. */ rg = b00; rf = b01; rG = b10; rF = b11; PQCLEAN_FALCONPADDED512_AARCH64_smallints_to_fpr(rg, g, FALCON_LOGN); PQCLEAN_FALCONPADDED512_AARCH64_FFT(rg, FALCON_LOGN); PQCLEAN_FALCONPADDED512_AARCH64_smallints_to_fpr(rf, f, FALCON_LOGN); PQCLEAN_FALCONPADDED512_AARCH64_FFT(rf, FALCON_LOGN); PQCLEAN_FALCONPADDED512_AARCH64_poly_neg(rf, rf, FALCON_LOGN); PQCLEAN_FALCONPADDED512_AARCH64_smallints_to_fpr(rG, G, FALCON_LOGN); PQCLEAN_FALCONPADDED512_AARCH64_FFT(rG, FALCON_LOGN); PQCLEAN_FALCONPADDED512_AARCH64_smallints_to_fpr(rF, F, FALCON_LOGN); PQCLEAN_FALCONPADDED512_AARCH64_FFT(rF, FALCON_LOGN); PQCLEAN_FALCONPADDED512_AARCH64_poly_neg(rF, rF, FALCON_LOGN); /* * Compute the FFT for the key elements, and negate f and F. */ /* * The Gram matrix is G = B·B*. Formulas are: * g00 = b00*adj(b00) + b01*adj(b01) * g01 = b00*adj(b10) + b01*adj(b11) * g10 = b10*adj(b00) + b11*adj(b01) * g11 = b10*adj(b10) + b11*adj(b11) * * For historical reasons, this implementation uses * g00, g01 and g11 (upper triangle). */ g00 = (fpr *)tmp; g01 = g00 + FALCON_N; g11 = g01 + FALCON_N; gxx = g11 + FALCON_N; PQCLEAN_FALCONPADDED512_AARCH64_poly_mulselfadj_fft(g00, b00, FALCON_LOGN); PQCLEAN_FALCONPADDED512_AARCH64_poly_mulselfadj_add_fft(g00, g00, b01, FALCON_LOGN); PQCLEAN_FALCONPADDED512_AARCH64_poly_muladj_fft(g01, b00, b10, FALCON_LOGN); PQCLEAN_FALCONPADDED512_AARCH64_poly_muladj_add_fft(g01, g01, b01, b11, FALCON_LOGN); PQCLEAN_FALCONPADDED512_AARCH64_poly_mulselfadj_fft(g11, b10, FALCON_LOGN); PQCLEAN_FALCONPADDED512_AARCH64_poly_mulselfadj_add_fft(g11, g11, b11, FALCON_LOGN); /* * Compute the Falcon tree. */ ffLDL_fft(tree, g00, g01, g11, FALCON_LOGN, gxx); /* * Normalize tree. */ ffLDL_binary_normalize(tree, FALCON_LOGN, FALCON_LOGN); } typedef int (*samplerZ)(void *ctx, fpr mu, fpr sigma); /* * Perform Fast Fourier Sampling for target vector t. The Gram matrix * is provided (G = [[g00, g01], [adj(g01), g11]]). The sampled vector * is written over (t0,t1). The Gram matrix is modified as well. The * tmp[] buffer must have room for four polynomials. */ static void ffSampling_fft_dyntree(samplerZ samp, void *samp_ctx, fpr *restrict t0, fpr *restrict t1, fpr *restrict g00, fpr *restrict g01, fpr *restrict g11, unsigned orig_logn, unsigned logn, fpr *restrict tmp) { size_t n, hn; fpr *z0, *z1; /* * Deepest level: the LDL tree leaf value is just g00 (the * array has length only 1 at this point); we normalize it * with regards to sigma, then use it for sampling. */ if (logn == 0) { fpr leaf; leaf = g00[0]; leaf = fpr_mul(fpr_sqrt(leaf), fpr_inv_sigma_9); t0[0] = fpr_of(samp(samp_ctx, t0[0], leaf)); t1[0] = fpr_of(samp(samp_ctx, t1[0], leaf)); return; } n = (size_t)1 << logn; hn = n >> 1; /* * Decompose G into LDL. We only need d00 (identical to g00), * d11, and l10; we do that in place. */ PQCLEAN_FALCONPADDED512_AARCH64_poly_LDL_fft(g00, g01, g11, logn); /* * Split d00 and d11 and expand them into half-size quasi-cyclic * Gram matrices. We also save l10 in tmp[]. */ PQCLEAN_FALCONPADDED512_AARCH64_poly_split_fft(tmp, tmp + hn, g00, logn); memcpy(g00, tmp, n * sizeof * tmp); PQCLEAN_FALCONPADDED512_AARCH64_poly_split_fft(tmp, tmp + hn, g11, logn); memcpy(g11, tmp, n * sizeof * tmp); memcpy(tmp, g01, n * sizeof * g01); memcpy(g01, g00, hn * sizeof * g00); memcpy(g01 + hn, g11, hn * sizeof * g00); /* * The half-size Gram matrices for the recursive LDL tree * building are now: * - left sub-tree: g00, g00+hn, g01 * - right sub-tree: g11, g11+hn, g01+hn * l10 is in tmp[]. */ /* * We split t1 and use the first recursive call on the two * halves, using the right sub-tree. The result is merged * back into tmp + 2*n. */ z1 = tmp + n; PQCLEAN_FALCONPADDED512_AARCH64_poly_split_fft(z1, z1 + hn, t1, logn); ffSampling_fft_dyntree(samp, samp_ctx, z1, z1 + hn, g11, g11 + hn, g01 + hn, orig_logn, logn - 1, z1 + n); PQCLEAN_FALCONPADDED512_AARCH64_poly_merge_fft(tmp + (n << 1), z1, z1 + hn, logn); /* * Compute tb0 = t0 + (t1 - z1) * l10. * At that point, l10 is in tmp, t1 is unmodified, and z1 is * in tmp + (n << 1). The buffer in z1 is free. * * In the end, z1 is written over t1, and tb0 is in t0. */ PQCLEAN_FALCONPADDED512_AARCH64_poly_sub(z1, t1, tmp + (n << 1), logn); memcpy(t1, tmp + (n << 1), n * sizeof * tmp); PQCLEAN_FALCONPADDED512_AARCH64_poly_mul_add_fft(t0, t0, tmp, z1, logn); /* * Second recursive invocation, on the split tb0 (currently in t0) * and the left sub-tree. */ z0 = tmp; PQCLEAN_FALCONPADDED512_AARCH64_poly_split_fft(z0, z0 + hn, t0, logn); ffSampling_fft_dyntree(samp, samp_ctx, z0, z0 + hn, g00, g00 + hn, g01, orig_logn, logn - 1, z0 + n); PQCLEAN_FALCONPADDED512_AARCH64_poly_merge_fft(t0, z0, z0 + hn, logn); } /* * Perform Fast Fourier Sampling for target vector t and LDL tree T. * tmp[] must have size for at least two polynomials of size 2^logn. */ static void ffSampling_fft(samplerZ samp, void *samp_ctx, fpr *restrict z0, fpr *restrict z1, const fpr *restrict tree, const fpr *restrict t0, const fpr *restrict t1, unsigned logn, fpr *restrict tmp) { size_t n, hn; const fpr *tree0, *tree1; /* * When logn == 2, we inline the last two recursion levels. */ if (logn == 2) { fpr x0, x1, y0, y1, w0, w1, w2, w3, sigma; fpr a_re, a_im, b_re, b_im, c_re, c_im; tree0 = tree + 4; tree1 = tree + 8; /* * We split t1 into w*, then do the recursive invocation, * with output in w*. We finally merge back into z1. */ // Split a_re = t1[0]; a_im = t1[2]; b_re = t1[1]; b_im = t1[3]; c_re = fpr_add(a_re, b_re); c_im = fpr_add(a_im, b_im); w0 = fpr_half(c_re); w1 = fpr_half(c_im); c_re = fpr_sub(a_re, b_re); c_im = fpr_sub(a_im, b_im); w2 = fpr_mul(fpr_add(c_re, c_im), fpr_invsqrt8); w3 = fpr_mul(fpr_sub(c_im, c_re), fpr_invsqrt8); // Sampling x0 = w2; x1 = w3; sigma = tree1[3]; w2 = fpr_of(samp(samp_ctx, x0, sigma)); w3 = fpr_of(samp(samp_ctx, x1, sigma)); a_re = fpr_sub(x0, w2); a_im = fpr_sub(x1, w3); b_re = tree1[0]; b_im = tree1[1]; c_re = fpr_sub(fpr_mul(a_re, b_re), fpr_mul(a_im, b_im)); c_im = fpr_add(fpr_mul(a_re, b_im), fpr_mul(a_im, b_re)); x0 = fpr_add(c_re, w0); x1 = fpr_add(c_im, w1); sigma = tree1[2]; w0 = fpr_of(samp(samp_ctx, x0, sigma)); w1 = fpr_of(samp(samp_ctx, x1, sigma)); // Merge a_re = w0; a_im = w1; b_re = w2; b_im = w3; c_re = fpr_mul(fpr_sub(b_re, b_im), fpr_invsqrt2); c_im = fpr_mul(fpr_add(b_re, b_im), fpr_invsqrt2); z1[0] = w0 = fpr_add(a_re, c_re); z1[2] = w2 = fpr_add(a_im, c_im); z1[1] = w1 = fpr_sub(a_re, c_re); z1[3] = w3 = fpr_sub(a_im, c_im); /* * Compute tb0 = t0 + (t1 - z1) * L. Value tb0 ends up in w*. */ w0 = fpr_sub(t1[0], w0); w1 = fpr_sub(t1[1], w1); w2 = fpr_sub(t1[2], w2); w3 = fpr_sub(t1[3], w3); a_re = w0; a_im = w2; b_re = tree[0]; b_im = tree[2]; w0 = fpr_sub(fpr_mul(a_re, b_re), fpr_mul(a_im, b_im)); w2 = fpr_add(fpr_mul(a_re, b_im), fpr_mul(a_im, b_re)); a_re = w1; a_im = w3; b_re = tree[1]; b_im = tree[3]; w1 = fpr_sub(fpr_mul(a_re, b_re), fpr_mul(a_im, b_im)); w3 = fpr_add(fpr_mul(a_re, b_im), fpr_mul(a_im, b_re)); w0 = fpr_add(w0, t0[0]); w1 = fpr_add(w1, t0[1]); w2 = fpr_add(w2, t0[2]); w3 = fpr_add(w3, t0[3]); /* * Second recursive invocation. */ // Split a_re = w0; a_im = w2; b_re = w1; b_im = w3; c_re = fpr_add(a_re, b_re); c_im = fpr_add(a_im, b_im); w0 = fpr_half(c_re); w1 = fpr_half(c_im); c_re = fpr_sub(a_re, b_re); c_im = fpr_sub(a_im, b_im); w2 = fpr_mul(fpr_add(c_re, c_im), fpr_invsqrt8); w3 = fpr_mul(fpr_sub(c_im, c_re), fpr_invsqrt8); // Sampling x0 = w2; x1 = w3; sigma = tree0[3]; w2 = y0 = fpr_of(samp(samp_ctx, x0, sigma)); w3 = y1 = fpr_of(samp(samp_ctx, x1, sigma)); a_re = fpr_sub(x0, y0); a_im = fpr_sub(x1, y1); b_re = tree0[0]; b_im = tree0[1]; c_re = fpr_sub(fpr_mul(a_re, b_re), fpr_mul(a_im, b_im)); c_im = fpr_add(fpr_mul(a_re, b_im), fpr_mul(a_im, b_re)); x0 = fpr_add(c_re, w0); x1 = fpr_add(c_im, w1); sigma = tree0[2]; w0 = fpr_of(samp(samp_ctx, x0, sigma)); w1 = fpr_of(samp(samp_ctx, x1, sigma)); // Merge a_re = w0; a_im = w1; b_re = w2; b_im = w3; c_re = fpr_mul(fpr_sub(b_re, b_im), fpr_invsqrt2); c_im = fpr_mul(fpr_add(b_re, b_im), fpr_invsqrt2); z0[0] = fpr_add(a_re, c_re); z0[2] = fpr_add(a_im, c_im); z0[1] = fpr_sub(a_re, c_re); z0[3] = fpr_sub(a_im, c_im); return; } /* * Case logn == 1 is reachable only when using Falcon-2 (the * smallest size for which Falcon is mathematically defined, but * of course way too insecure to be of any use). */ if (logn == 1) { fpr x0, x1, y0, y1, sigma; fpr a_re, a_im, b_re, b_im, c_re, c_im; x0 = t1[0]; x1 = t1[1]; sigma = tree[3]; z1[0] = y0 = fpr_of(samp(samp_ctx, x0, sigma)); z1[1] = y1 = fpr_of(samp(samp_ctx, x1, sigma)); a_re = fpr_sub(x0, y0); a_im = fpr_sub(x1, y1); b_re = tree[0]; b_im = tree[1]; c_re = fpr_sub(fpr_mul(a_re, b_re), fpr_mul(a_im, b_im)); c_im = fpr_add(fpr_mul(a_re, b_im), fpr_mul(a_im, b_re)); x0 = fpr_add(c_re, t0[0]); x1 = fpr_add(c_im, t0[1]); sigma = tree[2]; z0[0] = fpr_of(samp(samp_ctx, x0, sigma)); z0[1] = fpr_of(samp(samp_ctx, x1, sigma)); return; } /* * General recursive case (logn >= 2). */ n = (size_t)1 << logn; hn = n >> 1; tree0 = tree + n; tree1 = tree + n + ffLDL_treesize(logn - 1); /* * We split t1 into z1 (reused as temporary storage), then do * the recursive invocation, with output in tmp. We finally * merge back into z1. */ PQCLEAN_FALCONPADDED512_AARCH64_poly_split_fft(z1, z1 + hn, t1, logn); ffSampling_fft(samp, samp_ctx, tmp, tmp + hn, tree1, z1, z1 + hn, logn - 1, tmp + n); PQCLEAN_FALCONPADDED512_AARCH64_poly_merge_fft(z1, tmp, tmp + hn, logn); /* * Compute tb0 = t0 + (t1 - z1) * L. Value tb0 ends up in tmp[]. */ PQCLEAN_FALCONPADDED512_AARCH64_poly_sub(tmp, t1, z1, logn); PQCLEAN_FALCONPADDED512_AARCH64_poly_mul_add_fft(tmp, t0, tmp, tree, logn); /* * Second recursive invocation. */ PQCLEAN_FALCONPADDED512_AARCH64_poly_split_fft(z0, z0 + hn, tmp, logn); ffSampling_fft(samp, samp_ctx, tmp, tmp + hn, tree0, z0, z0 + hn, logn - 1, tmp + n); PQCLEAN_FALCONPADDED512_AARCH64_poly_merge_fft(z0, tmp, tmp + hn, logn); } /* * Compute a signature: the signature contains two vectors, s1 and s2. * The s1 vector is not returned. The squared norm of (s1,s2) is * computed, and if it is short enough, then s2 is returned into the * s2[] buffer, and 1 is returned; otherwise, s2[] is untouched and 0 is * returned; the caller should then try again. This function uses an * expanded key. * * tmp[] must have room for at least six polynomials. */ static int do_sign_tree(samplerZ samp, void *samp_ctx, int16_t *s2, const fpr *restrict expanded_key, const uint16_t *hm, fpr *restrict tmp) { fpr *t0, *t1, *tx, *ty; const fpr *b00, *b01, *b10, *b11, *tree; fpr ni; int16_t *s1tmp, *s2tmp; t0 = tmp; t1 = t0 + FALCON_N; b00 = expanded_key + skoff_b00(FALCON_LOGN); b01 = expanded_key + skoff_b01(FALCON_LOGN); b10 = expanded_key + skoff_b10(FALCON_LOGN); b11 = expanded_key + skoff_b11(FALCON_LOGN); tree = expanded_key + skoff_tree(FALCON_LOGN); /* * Set the target vector to [hm, 0] (hm is the hashed message). */ PQCLEAN_FALCONPADDED512_AARCH64_poly_fpr_of_s16(t0, hm, FALCON_N); /* * Apply the lattice basis to obtain the real target * vector (after normalization with regards to modulus). */ PQCLEAN_FALCONPADDED512_AARCH64_FFT(t0, FALCON_LOGN); ni = fpr_inverse_of_q; PQCLEAN_FALCONPADDED512_AARCH64_poly_mul_fft(t1, t0, b01, FALCON_LOGN); PQCLEAN_FALCONPADDED512_AARCH64_poly_mulconst(t1, t1, fpr_neg(ni), FALCON_LOGN); PQCLEAN_FALCONPADDED512_AARCH64_poly_mul_fft(t0, t0, b11, FALCON_LOGN); PQCLEAN_FALCONPADDED512_AARCH64_poly_mulconst(t0, t0, ni, FALCON_LOGN); tx = t1 + FALCON_N; ty = tx + FALCON_N; /* * Apply sampling. Output is written back in [tx, ty]. */ ffSampling_fft(samp, samp_ctx, tx, ty, tree, t0, t1, FALCON_LOGN, ty + FALCON_N); /* * Get the lattice point corresponding to that tiny vector. */ PQCLEAN_FALCONPADDED512_AARCH64_poly_mul_fft(t0, tx, b00, FALCON_LOGN); PQCLEAN_FALCONPADDED512_AARCH64_poly_mul_add_fft(t0, t0, ty, b10, FALCON_LOGN); PQCLEAN_FALCONPADDED512_AARCH64_iFFT(t0, FALCON_LOGN); PQCLEAN_FALCONPADDED512_AARCH64_poly_mul_fft(t1, tx, b01, FALCON_LOGN); PQCLEAN_FALCONPADDED512_AARCH64_poly_mul_add_fft(t1, t1, ty, b11, FALCON_LOGN); PQCLEAN_FALCONPADDED512_AARCH64_iFFT(t1, FALCON_LOGN); /* * Compute the signature. */ /* * With "normal" degrees (e.g. 512 or 1024), it is very * improbable that the computed vector is not short enough; * however, it may happen in practice for the very reduced * versions (e.g. degree 16 or below). In that case, the caller * will loop, and we must not write anything into s2[] because * s2[] may overlap with the hashed message hm[] and we need * hm[] for the next iteration. */ s1tmp = (int16_t *)tx; s2tmp = (int16_t *)tmp; if (PQCLEAN_FALCONPADDED512_AARCH64_is_short_tmp(s1tmp, s2tmp, (int16_t *) hm, t0, t1)) { memcpy(s2, s2tmp, FALCON_N * sizeof * s2); memcpy(tmp, s1tmp, FALCON_N * sizeof * s1tmp); return 1; } return 0; } /* * Compute a signature: the signature contains two vectors, s1 and s2. * The s1 vector is not returned. The squared norm of (s1,s2) is * computed, and if it is short enough, then s2 is returned into the * s2[] buffer, and 1 is returned; otherwise, s2[] is untouched and 0 is * returned; the caller should then try again. * * tmp[] must have room for at least nine polynomials. */ static int do_sign_dyn(samplerZ samp, void *samp_ctx, int16_t *s2, const int8_t *restrict f, const int8_t *restrict g, const int8_t *restrict F, const int8_t *restrict G, const uint16_t *hm, fpr *restrict tmp) { fpr *t0, *t1, *tx, *ty; fpr *b00, *b01, *b10, *b11, *g00, *g01, *g11; fpr ni; int16_t *s1tmp, *s2tmp; /* * Lattice basis is B = [[g, -f], [G, -F]]. We convert it to FFT. */ b00 = tmp; b01 = b00 + FALCON_N; b10 = b01 + FALCON_N; b11 = b10 + FALCON_N; t0 = b11 + FALCON_N; t1 = t0 + FALCON_N; PQCLEAN_FALCONPADDED512_AARCH64_smallints_to_fpr(b00, g, FALCON_LOGN); PQCLEAN_FALCONPADDED512_AARCH64_FFT(b00, FALCON_LOGN); PQCLEAN_FALCONPADDED512_AARCH64_smallints_to_fpr(b01, f, FALCON_LOGN); PQCLEAN_FALCONPADDED512_AARCH64_FFT(b01, FALCON_LOGN); PQCLEAN_FALCONPADDED512_AARCH64_poly_neg(b01, b01, FALCON_LOGN); PQCLEAN_FALCONPADDED512_AARCH64_smallints_to_fpr(b10, G, FALCON_LOGN); PQCLEAN_FALCONPADDED512_AARCH64_FFT(b10, FALCON_LOGN); PQCLEAN_FALCONPADDED512_AARCH64_smallints_to_fpr(b11, F, FALCON_LOGN); PQCLEAN_FALCONPADDED512_AARCH64_FFT(b11, FALCON_LOGN); PQCLEAN_FALCONPADDED512_AARCH64_poly_neg(b11, b11, FALCON_LOGN); /* * Compute the Gram matrix G = B·B*. Formulas are: * g00 = b00*adj(b00) + b01*adj(b01) * g01 = b00*adj(b10) + b01*adj(b11) * g10 = b10*adj(b00) + b11*adj(b01) * g11 = b10*adj(b10) + b11*adj(b11) * * For historical reasons, this implementation uses * g00, g01 and g11 (upper triangle). g10 is not kept * since it is equal to adj(g01). * * We _replace_ the matrix B with the Gram matrix, but we * must keep b01 and b11 for computing the target vector. * * Memory layout: * b00 | b01 | b10 | b11 | t0 | t1 * g00 | g01 | g11 | b01 | t0 | t1 */ PQCLEAN_FALCONPADDED512_AARCH64_poly_muladj_fft(t1, b00, b10, FALCON_LOGN); // t1 <- b00*adj(b10) PQCLEAN_FALCONPADDED512_AARCH64_poly_mulselfadj_fft(t0, b01, FALCON_LOGN); // t0 <- b01*adj(b01) PQCLEAN_FALCONPADDED512_AARCH64_poly_mulselfadj_fft(b00, b00, FALCON_LOGN); // b00 <- b00*adj(b00) PQCLEAN_FALCONPADDED512_AARCH64_poly_add(b00, b00, t0, FALCON_LOGN); // b00 <- g00 memcpy(t0, b01, FALCON_N * sizeof * b01); PQCLEAN_FALCONPADDED512_AARCH64_poly_muladj_add_fft(b01, t1, b01, b11, FALCON_LOGN); // b01 <- b01*adj(b11) PQCLEAN_FALCONPADDED512_AARCH64_poly_mulselfadj_fft(b10, b10, FALCON_LOGN); // b10 <- b10*adj(b10) PQCLEAN_FALCONPADDED512_AARCH64_poly_mulselfadj_add_fft(b10, b10, b11, FALCON_LOGN); // t1 = g11 <- b11*adj(b11) /* * We rename variables to make things clearer. The three elements * of the Gram matrix uses the first 3*n slots of tmp[], followed * by b11 and b01 (in that order). */ g00 = b00; g01 = b01; g11 = b10; b01 = t0; t0 = b01 + FALCON_N; t1 = t0 + FALCON_N; /* * Memory layout at that point: * g00 g01 g11 b11 b01 t0 t1 */ /* * Set the target vector to [hm, 0] (hm is the hashed message). */ PQCLEAN_FALCONPADDED512_AARCH64_poly_fpr_of_s16(t0, hm, FALCON_N); /* * Apply the lattice basis to obtain the real target * vector (after normalization with regards to modulus). */ PQCLEAN_FALCONPADDED512_AARCH64_FFT(t0, FALCON_LOGN); ni = fpr_inverse_of_q; PQCLEAN_FALCONPADDED512_AARCH64_poly_mul_fft(t1, t0, b01, FALCON_LOGN); PQCLEAN_FALCONPADDED512_AARCH64_poly_mulconst(t1, t1, fpr_neg(ni), FALCON_LOGN); PQCLEAN_FALCONPADDED512_AARCH64_poly_mul_fft(t0, t0, b11, FALCON_LOGN); PQCLEAN_FALCONPADDED512_AARCH64_poly_mulconst(t0, t0, ni, FALCON_LOGN); /* * b01 and b11 can be discarded, so we move back (t0,t1). * Memory layout is now: * g00 g01 g11 t0 t1 */ memcpy(b11, t0, FALCON_N * 2 * sizeof * t0); t0 = g11 + FALCON_N; t1 = t0 + FALCON_N; /* * Apply sampling; result is written over (t0,t1). * t1, g00 */ ffSampling_fft_dyntree(samp, samp_ctx, t0, t1, g00, g01, g11, FALCON_LOGN, FALCON_LOGN, t1 + FALCON_N); /* * We arrange the layout back to: * b00 b01 b10 b11 t0 t1 * * We did not conserve the matrix basis, so we must recompute * it now. */ b00 = tmp; b01 = b00 + FALCON_N; b10 = b01 + FALCON_N; b11 = b10 + FALCON_N; memmove(b11 + FALCON_N, t0, FALCON_N * 2 * sizeof * t0); t0 = b11 + FALCON_N; t1 = t0 + FALCON_N; PQCLEAN_FALCONPADDED512_AARCH64_smallints_to_fpr(b00, g, FALCON_LOGN); PQCLEAN_FALCONPADDED512_AARCH64_FFT(b00, FALCON_LOGN); PQCLEAN_FALCONPADDED512_AARCH64_smallints_to_fpr(b01, f, FALCON_LOGN); PQCLEAN_FALCONPADDED512_AARCH64_FFT(b01, FALCON_LOGN); PQCLEAN_FALCONPADDED512_AARCH64_poly_neg(b01, b01, FALCON_LOGN); PQCLEAN_FALCONPADDED512_AARCH64_smallints_to_fpr(b10, G, FALCON_LOGN); PQCLEAN_FALCONPADDED512_AARCH64_FFT(b10, FALCON_LOGN); PQCLEAN_FALCONPADDED512_AARCH64_smallints_to_fpr(b11, F, FALCON_LOGN); PQCLEAN_FALCONPADDED512_AARCH64_FFT(b11, FALCON_LOGN); PQCLEAN_FALCONPADDED512_AARCH64_poly_neg(b11, b11, FALCON_LOGN); tx = t1 + FALCON_N; ty = tx + FALCON_N; /* * Get the lattice point corresponding to that tiny vector. */ PQCLEAN_FALCONPADDED512_AARCH64_poly_mul_fft(tx, t0, b00, FALCON_LOGN); PQCLEAN_FALCONPADDED512_AARCH64_poly_mul_fft(ty, t0, b01, FALCON_LOGN); PQCLEAN_FALCONPADDED512_AARCH64_poly_mul_add_fft(t0, tx, t1, b10, FALCON_LOGN); PQCLEAN_FALCONPADDED512_AARCH64_poly_mul_add_fft(t1, ty, t1, b11, FALCON_LOGN); PQCLEAN_FALCONPADDED512_AARCH64_iFFT(t0, FALCON_LOGN); PQCLEAN_FALCONPADDED512_AARCH64_iFFT(t1, FALCON_LOGN); /* * With "normal" degrees (e.g. 512 or 1024), it is very * improbable that the computed vector is not short enough; * however, it may happen in practice for the very reduced * versions (e.g. degree 16 or below). In that case, the caller * will loop, and we must not write anything into s2[] because * s2[] may overlap with the hashed message hm[] and we need * hm[] for the next iteration. */ s1tmp = (int16_t *)tx; s2tmp = (int16_t *)tmp; if (PQCLEAN_FALCONPADDED512_AARCH64_is_short_tmp(s1tmp, s2tmp, (int16_t *) hm, t0, t1)) { memcpy(s2, s2tmp, FALCON_N * sizeof * s2); memcpy(tmp, s1tmp, FALCON_N * sizeof * s1tmp); return 1; } return 0; } /* see inner.h */ void PQCLEAN_FALCONPADDED512_AARCH64_sign_tree(int16_t *sig, inner_shake256_context *rng, const fpr *restrict expanded_key, const uint16_t *hm, uint8_t *tmp) { fpr *ftmp; ftmp = (fpr *)tmp; for (;;) { /* * Signature produces short vectors s1 and s2. The * signature is acceptable only if the aggregate vector * s1,s2 is short; we must use the same bound as the * verifier. * * If the signature is acceptable, then we return only s2 * (the verifier recomputes s1 from s2, the hashed message, * and the public key). */ sampler_context spc; samplerZ samp; void *samp_ctx; /* * Normal sampling. We use a fast PRNG seeded from our * SHAKE context ('rng'). */ spc.sigma_min = fpr_sigma_min_9; PQCLEAN_FALCONPADDED512_AARCH64_prng_init(&spc.p, rng); samp = PQCLEAN_FALCONPADDED512_AARCH64_sampler; samp_ctx = &spc; /* * Do the actual signature. */ if (do_sign_tree(samp, samp_ctx, sig, expanded_key, hm, ftmp)) { break; } } } /* see inner.h */ void PQCLEAN_FALCONPADDED512_AARCH64_sign_dyn(int16_t *sig, inner_shake256_context *rng, const int8_t *restrict f, const int8_t *restrict g, const int8_t *restrict F, const int8_t *restrict G, const uint16_t *hm, uint8_t *tmp) { fpr *ftmp; ftmp = (fpr *)tmp; for (;;) { /* * Signature produces short vectors s1 and s2. The * signature is acceptable only if the aggregate vector * s1,s2 is short; we must use the same bound as the * verifier. * * If the signature is acceptable, then we return only s2 * (the verifier recomputes s1 from s2, the hashed message, * and the public key). */ sampler_context spc; samplerZ samp; void *samp_ctx; /* * Normal sampling. We use a fast PRNG seeded from our * SHAKE context ('rng'). */ spc.sigma_min = fpr_sigma_min_9; PQCLEAN_FALCONPADDED512_AARCH64_prng_init(&spc.p, rng); samp = PQCLEAN_FALCONPADDED512_AARCH64_sampler; samp_ctx = &spc; /* * Do the actual signature. */ if (do_sign_dyn(samp, samp_ctx, sig, f, g, F, G, hm, ftmp)) { break; } } }