/* * This file was originally licensed * under Apache 2.0 (https://www.apache.org/licenses/LICENSE-2.0.html) or * public domain at https://github.com/pq-crystals/dilithium/tree/master/ref * * We offer * CC0 1.0 Universal or the following MIT License for this file. * You may freely choose one of them that applies. * * MIT License * * Copyright (c) 2023: Hanno Becker, Vincent Hwang, Matthias J. Kannwischer, Bo-Yin Yang, and Shang-Yi Yang * Copyright (c) 2023: Vincent Hwang * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "params.h" #include "poly.h" #include "polyvec.h" #include "ntt.h" #include "reduce.h" #include /************************************************* * Name: expand_mat * * Description: Implementation of ExpandA. Generates matrix A with uniformly * random coefficients a_{i,j} by performing rejection * sampling on the output stream of SHAKE128(rho|j|i) * * Arguments: - polyvecl mat[K]: output matrix * - const uint8_t rho[]: byte array containing seed rho **************************************************/ void polyvec_matrix_expand(polyvecl mat[K], const uint8_t rho[SEEDBYTES]) { unsigned int i, j; for (j = 0; j < L; ++j) { for (i = 0; i < K; i += 2) { poly_uniformx2(&mat[i + 0].vec[j], &mat[i + 1].vec[j], rho, (uint16_t) ((i << 8) + j), (uint16_t) (((i + 1) << 8) + j)); } } } void polyvec_matrix_pointwise_montgomery(polyveck *t, const polyvecl mat[K], const polyvecl *v) { unsigned int i; for (i = 0; i < K; ++i) { polyvecl_pointwise_acc_montgomery(&t->vec[i], &mat[i], v); } } /**************************************************************/ /************ Vectors of polynomials of length L **************/ /**************************************************************/ void polyvecl_uniform_eta(polyvecl *v, const uint8_t seed[CRHBYTES], uint16_t nonce) { unsigned int i; for (i = 0; i < L; ++i) { poly_uniform_eta(&v->vec[i], seed, nonce++); } } void polyvecl_uniform_gamma1(polyvecl *v, const uint8_t seed[CRHBYTES], uint16_t nonce) { unsigned int i; for (i = 0; i < L - 1; i += 2) { poly_uniform_gamma1x2(&v->vec[i + 0], &v->vec[i + 1], seed, (uint16_t) (L * nonce + i + 0), (uint16_t) (L * nonce + i + 1)); } if (L & 1) { poly_uniform_gamma1(&v->vec[i], seed, (uint16_t) (L * nonce + L - 1)); } } void polyvecl_reduce(polyvecl *v) { unsigned int i; for (i = 0; i < L; ++i) { poly_reduce(&v->vec[i]); } } /************************************************* * Name: polyvecl_freeze * * Description: Reduce coefficients of polynomials in vector of length L * to standard representatives. * * Arguments: - polyvecl *v: pointer to input/output vector **************************************************/ void polyvecl_freeze(polyvecl *v) { unsigned int i; for (i = 0; i < L; ++i) { poly_freeze(&v->vec[i]); } } /************************************************* * Name: polyvecl_add * * Description: Add vectors of polynomials of length L. * No modular reduction is performed. * * Arguments: - polyvecl *w: pointer to output vector * - const polyvecl *u: pointer to first summand * - const polyvecl *v: pointer to second summand **************************************************/ void polyvecl_add(polyvecl *w, const polyvecl *u, const polyvecl *v) { unsigned int i; for (i = 0; i < L; ++i) { poly_add(&w->vec[i], &u->vec[i], &v->vec[i]); } } /************************************************* * Name: polyvecl_ntt * * Description: Forward NTT of all polynomials in vector of length L. Output * coefficients can be up to 16*Q larger than input coefficients. * * Arguments: - polyvecl *v: pointer to input/output vector **************************************************/ void polyvecl_ntt(polyvecl *v) { unsigned int i; for (i = 0; i < L; ++i) { poly_ntt(&v->vec[i]); } } void polyvecl_invntt_tomont(polyvecl *v) { unsigned int i; for (i = 0; i < L; ++i) { poly_invntt_tomont(&v->vec[i]); } } void polyvecl_pointwise_poly_montgomery(polyvecl *r, const poly *a, const polyvecl *v) { unsigned int i; for (i = 0; i < L; ++i) { poly_pointwise_montgomery(&r->vec[i], a, &v->vec[i]); } } /************************************************* * Name: polyvecl_pointwise_acc_montgomery * * Description: Pointwise multiply vectors of polynomials of length L, multiply * resulting vector by 2^{-32} and add (accumulate) polynomials * in it. Input/output vectors are in NTT domain representation. * * Arguments: - poly *w: output polynomial * - const polyvecl *u: pointer to first input vector * - const polyvecl *v: pointer to second input vector **************************************************/ extern void PQCLEAN_MLDSA44_AARCH64__asm_polyvecl_pointwise_acc_montgomery(int32_t *, const int32_t *, const int32_t *, const int32_t *); void polyvecl_pointwise_acc_montgomery(poly *w, const polyvecl *u, const polyvecl *v) { PQCLEAN_MLDSA44_AARCH64__asm_polyvecl_pointwise_acc_montgomery(w->coeffs, u->vec[0].coeffs, v->vec[0].coeffs, constants); } /************************************************* * Name: polyvecl_chknorm * * Description: Check infinity norm of polynomials in vector of length L. * Assumes input polyvecl to be reduced by polyvecl_reduce(). * * Arguments: - const polyvecl *v: pointer to vector * - int32_t B: norm bound * * Returns 0 if norm of all polynomials is strictly smaller than B <= (Q-1)/8 * and 1 otherwise. **************************************************/ int polyvecl_chknorm(const polyvecl *v, int32_t bound) { unsigned int i; for (i = 0; i < L; ++i) { if (poly_chknorm(&v->vec[i], bound)) { return 1; } } return 0; } /**************************************************************/ /************ Vectors of polynomials of length K **************/ /**************************************************************/ void polyveck_uniform_eta(polyveck *v, const uint8_t seed[CRHBYTES], uint16_t nonce) { unsigned int i; for (i = 0; i < K; ++i) { poly_uniform_eta(&v->vec[i], seed, nonce++); } } /************************************************* * Name: polyveck_reduce * * Description: Reduce coefficients of polynomials in vector of length K * to representatives in [-6283009,6283007]. * * Arguments: - polyveck *v: pointer to input/output vector **************************************************/ void polyveck_reduce(polyveck *v) { unsigned int i; for (i = 0; i < K; ++i) { poly_reduce(&v->vec[i]); } } /************************************************* * Name: polyveck_caddq * * Description: For all coefficients of polynomials in vector of length K * add Q if coefficient is negative. * * Arguments: - polyveck *v: pointer to input/output vector **************************************************/ void polyveck_caddq(polyveck *v) { unsigned int i; for (i = 0; i < K; ++i) { poly_caddq(&v->vec[i]); } } /************************************************* * Name: polyveck_freeze * * Description: Reduce coefficients of polynomials in vector of length K * to standard representatives. * * Arguments: - polyveck *v: pointer to input/output vector **************************************************/ void polyveck_freeze(polyveck *v) { unsigned int i; for (i = 0; i < K; ++i) { poly_freeze(&v->vec[i]); } } /************************************************* * Name: polyveck_add * * Description: Add vectors of polynomials of length K. * No modular reduction is performed. * * Arguments: - polyveck *w: pointer to output vector * - const polyveck *u: pointer to first summand * - const polyveck *v: pointer to second summand **************************************************/ void polyveck_add(polyveck *w, const polyveck *u, const polyveck *v) { unsigned int i; for (i = 0; i < K; ++i) { poly_add(&w->vec[i], &u->vec[i], &v->vec[i]); } } /************************************************* * Name: polyveck_sub * * Description: Subtract vectors of polynomials of length K. * No modular reduction is performed. * * Arguments: - polyveck *w: pointer to output vector * - const polyveck *u: pointer to first input vector * - const polyveck *v: pointer to second input vector to be * subtracted from first input vector **************************************************/ void polyveck_sub(polyveck *w, const polyveck *u, const polyveck *v) { unsigned int i; for (i = 0; i < K; ++i) { poly_sub(&w->vec[i], &u->vec[i], &v->vec[i]); } } /************************************************* * Name: polyveck_shiftl * * Description: Multiply vector of polynomials of Length K by 2^D without modular * reduction. Assumes input coefficients to be less than 2^{31-D}. * * Arguments: - polyveck *v: pointer to input/output vector **************************************************/ void polyveck_shiftl(polyveck *v) { unsigned int i; for (i = 0; i < K; ++i) { poly_shiftl(&v->vec[i]); } } /************************************************* * Name: polyveck_ntt * * Description: Forward NTT of all polynomials in vector of length K. Output * coefficients can be up to 16*Q larger than input coefficients. * * Arguments: - polyveck *v: pointer to input/output vector **************************************************/ void polyveck_ntt(polyveck *v) { unsigned int i; for (i = 0; i < K; ++i) { poly_ntt(&v->vec[i]); } } /************************************************* * Name: polyveck_invntt_tomont * * Description: Inverse NTT and multiplication by 2^{32} of polynomials * in vector of length K. Input coefficients need to be less * than 2*Q. * * Arguments: - polyveck *v: pointer to input/output vector **************************************************/ void polyveck_invntt_tomont(polyveck *v) { unsigned int i; for (i = 0; i < K; ++i) { poly_invntt_tomont(&v->vec[i]); } } void polyveck_pointwise_poly_montgomery(polyveck *r, const poly *a, const polyveck *v) { unsigned int i; for (i = 0; i < K; ++i) { poly_pointwise_montgomery(&r->vec[i], a, &v->vec[i]); } } /************************************************* * Name: polyveck_chknorm * * Description: Check infinity norm of polynomials in vector of length K. * Assumes input polyveck to be reduced by polyveck_reduce(). * * Arguments: - const polyveck *v: pointer to vector * - int32_t B: norm bound * * Returns 0 if norm of all polynomials are strictly smaller than B <= (Q-1)/8 * and 1 otherwise. **************************************************/ int polyveck_chknorm(const polyveck *v, int32_t bound) { unsigned int i; for (i = 0; i < K; ++i) { if (poly_chknorm(&v->vec[i], bound)) { return 1; } } return 0; } /************************************************* * Name: polyveck_power2round * * Description: For all coefficients a of polynomials in vector of length K, * compute a0, a1 such that a mod^+ Q = a1*2^D + a0 * with -2^{D-1} < a0 <= 2^{D-1}. Assumes coefficients to be * standard representatives. * * Arguments: - polyveck *v1: pointer to output vector of polynomials with * coefficients a1 * - polyveck *v0: pointer to output vector of polynomials with * coefficients a0 * - const polyveck *v: pointer to input vector **************************************************/ void polyveck_power2round(polyveck *v1, polyveck *v0, const polyveck *v) { unsigned int i; for (i = 0; i < K; ++i) { poly_power2round(&v1->vec[i], &v0->vec[i], &v->vec[i]); } } /************************************************* * Name: polyveck_decompose * * Description: For all coefficients a of polynomials in vector of length K, * compute high and low bits a0, a1 such a mod^+ Q = a1*ALPHA + a0 * with -ALPHA/2 < a0 <= ALPHA/2 except a1 = (Q-1)/ALPHA where we * set a1 = 0 and -ALPHA/2 <= a0 = a mod Q - Q < 0. * Assumes coefficients to be standard representatives. * * Arguments: - polyveck *v1: pointer to output vector of polynomials with * coefficients a1 * - polyveck *v0: pointer to output vector of polynomials with * coefficients a0 * - const polyveck *v: pointer to input vector **************************************************/ void polyveck_decompose(polyveck *v1, polyveck *v0, const polyveck *v) { unsigned int i; for (i = 0; i < K; ++i) { poly_decompose(&v1->vec[i], &v0->vec[i], &v->vec[i]); } } /************************************************* * Name: polyveck_make_hint * * Description: Compute hint vector. * * Arguments: - polyveck *h: pointer to output vector * - const polyveck *v0: pointer to low part of input vector * - const polyveck *v1: pointer to high part of input vector * * Returns number of 1 bits. **************************************************/ unsigned int polyveck_make_hint(polyveck *h, const polyveck *v0, const polyveck *v1) { unsigned int i, s = 0; for (i = 0; i < K; ++i) { s += poly_make_hint(&h->vec[i], &v0->vec[i], &v1->vec[i]); } return s; } /************************************************* * Name: polyveck_use_hint * * Description: Use hint vector to correct the high bits of input vector. * * Arguments: - polyveck *w: pointer to output vector of polynomials with * corrected high bits * - const polyveck *u: pointer to input vector * - const polyveck *h: pointer to input hint vector **************************************************/ void polyveck_use_hint(polyveck *w, const polyveck *u, const polyveck *h) { unsigned int i; for (i = 0; i < K; ++i) { poly_use_hint(&w->vec[i], &u->vec[i], &h->vec[i]); } } void polyveck_pack_w1(uint8_t r[K * POLYW1_PACKEDBYTES], const polyveck *w1) { unsigned int i; for (i = 0; i < K; ++i) { polyw1_pack(&r[i * POLYW1_PACKEDBYTES], &w1->vec[i]); } }