#include "api.h" #include "randombytes.h" #include #include #include #include #include #ifdef PQCLEAN_USE_VALGRIND #include #endif #ifdef PQCLEAN_FALCON_TEST_INTEROP // workaround to include the proper header in both // pytest and manual testing // https://stackoverflow.com/a/40063340 #define STR(x) #x #define STRINGIFY(x) STR(x) #define EXPAND(x) x #define CONCAT(x, y) STRINGIFY(EXPAND(x)EXPAND(y)) #include CONCAT(PQCLEAN_INTEROP_INCLUDE,/api.h) #endif #ifndef NTESTS #define NTESTS 5 #endif #define MLEN 1024 const uint8_t canary[8] = { 0x01, 0x23, 0x45, 0x67, 0x89, 0xAB, 0xCD, 0xEF }; /* allocate a bit more for all keys and messages and * make sure it is not touched by the implementations. */ static void write_canary(uint8_t *d) { for (size_t i = 0; i < 8; i++) { d[i] = canary[i]; } } static int check_canary(const uint8_t *d) { for (size_t i = 0; i < 8; i++) { if (d[i] != canary[i]) { return -1; } } return 0; } /** Safe malloc */ inline static void *malloc_s(size_t size) { void *ptr = malloc(size); if (ptr == NULL) { perror("Malloc failed!"); exit(1); } return ptr; } // https://stackoverflow.com/a/1489985/1711232 #define PASTER(x, y) x##_##y #define EVALUATOR(x, y) PASTER(x, y) #define NAMESPACE(fun) EVALUATOR(PQCLEAN_NAMESPACE, fun) #define CRYPTO_PUBLICKEYBYTES NAMESPACE(CRYPTO_PUBLICKEYBYTES) #define CRYPTO_SECRETKEYBYTES NAMESPACE(CRYPTO_SECRETKEYBYTES) #define CRYPTO_BYTES NAMESPACE(CRYPTO_BYTES) #define CRYPTO_ALGNAME NAMESPACE(CRYPTO_ALGNAME) #define crypto_sign_keypair NAMESPACE(crypto_sign_keypair) #define crypto_sign NAMESPACE(crypto_sign) #define crypto_sign_open NAMESPACE(crypto_sign_open) #define crypto_sign_signature NAMESPACE(crypto_sign_signature) #define crypto_sign_verify NAMESPACE(crypto_sign_verify) #ifdef PQCLEAN_FALCON_TEST_INTEROP // workaround since crypto_sign_verify is already tokenized #define INTEROP_PASTER(x, y, z) x##_##y##_##z #define INTEROP_EVALUATOR(x, y, z) INTEROP_PASTER(x, y, z) #define INTEROP_NAMESPACE(y, z) INTEROP_EVALUATOR(PQCLEAN_INTEROP_NAMESPACE, y, z) #define crypto_sign_verify_interop INTEROP_NAMESPACE(crypto, sign_verify) #endif #define RETURNS_ZERO(f) \ if ((f) != 0) { \ puts("(f) returned non-zero returncode"); \ res = 1; \ goto end; \ } // https://stackoverflow.com/a/55243651/248065 #define MY_TRUTHY_VALUE_X 1 #define CAT(x,y) CAT_(x,y) #define CAT_(x,y) x##y #define HAS_NAMESPACE(x) CAT(CAT(MY_TRUTHY_VALUE_,CAT(PQCLEAN_NAMESPACE,CAT(_,x))),X) #if !HAS_NAMESPACE(API_H) #error "namespace not properly defined for header guard" #endif static int test_sign(void) { /* * In order to properly test variable-length signatures, we need to check * that the implementation does not modify the provided buffer beyond the * reported signature length. We do this by filling the buffer with random * bytes before the call to sign and checking afterward that the tail has * not been modified. */ uint8_t sm_random_cmp[MLEN + CRYPTO_BYTES]; /* * This is most likely going to be aligned by the compiler. * 16 extra bytes for canary * 1 extra byte for unalignment */ uint8_t *pk_aligned = malloc_s(CRYPTO_PUBLICKEYBYTES + 16 + 1); uint8_t *sk_aligned = malloc_s(CRYPTO_SECRETKEYBYTES + 16 + 1); uint8_t *sm_aligned = malloc_s(MLEN + CRYPTO_BYTES + 16 + 1); uint8_t *m_aligned = malloc_s(MLEN + 16 + 1); /* * Make sure all pointers are odd. * This ensures that the implementation does not assume anything about the * data alignment. For example this would catch if an implementation * directly uses these pointers to load into vector registers using movdqa. */ uint8_t *pk = (uint8_t *) ((uintptr_t) pk_aligned | (uintptr_t) 1); uint8_t *sk = (uint8_t *) ((uintptr_t) sk_aligned | (uintptr_t) 1); uint8_t *sm = (uint8_t *) ((uintptr_t) sm_aligned | (uintptr_t) 1); uint8_t *m = (uint8_t *) ((uintptr_t) m_aligned | (uintptr_t) 1); size_t mlen; size_t smlen; int returncode; int res = 0; int i; /* * Write 8 byte canary before and after the actual memory regions. * This is used to validate that the implementation does not assume * anything about the placement of data in memory * (e.g., assuming that the pk is always behind the sk) */ write_canary(pk); write_canary(pk + CRYPTO_PUBLICKEYBYTES + 8); write_canary(sk); write_canary(sk + CRYPTO_SECRETKEYBYTES + 8); write_canary(sm); write_canary(sm + MLEN + CRYPTO_BYTES + 8); write_canary(m); write_canary(m + MLEN + 8); for (i = 0; i < NTESTS; i++) { RETURNS_ZERO(crypto_sign_keypair(pk + 8, sk + 8)); randombytes(m + 8, MLEN); // Fill the sm buffer with random bytes randombytes(sm_random_cmp, MLEN + CRYPTO_BYTES); memcpy(sm + 8, sm_random_cmp, MLEN + CRYPTO_BYTES); #ifdef PQCLEAN_USE_VALGRIND /* * With this buffer marked as undefined, valgrind will detect * cases where the signing code depends on the value of the tail * of the buffer. */ VALGRIND_MAKE_MEM_UNDEFINED(sm + 8, MLEN + CRYPTO_BYTES); #endif RETURNS_ZERO(crypto_sign(sm + 8, &smlen, m + 8, MLEN, sk + 8)); #ifdef PQCLEAN_USE_VALGRIND // We have to mark the tail as defined before doing the memcmp. VALGRIND_MAKE_MEM_DEFINED(sm + 8 + smlen, MLEN + CRYPTO_BYTES - smlen); #endif // check that the tail has not been modified RETURNS_ZERO(memcmp(sm + 8 + smlen, sm_random_cmp + smlen, MLEN + CRYPTO_BYTES - smlen)); // By relying on m == sm we prevent having to allocate CRYPTO_BYTES // twice if ((returncode = crypto_sign_open(sm + 8, &mlen, sm + 8, smlen, pk + 8)) != 0) { fprintf(stderr, "ERROR Signature did not verify correctly!\n"); if (returncode > 0) { fprintf(stderr, "ERROR return code should be < 0 on failure"); } res = 1; goto end; } // Validate that the implementation did not touch the canary if (check_canary(pk) || check_canary(pk + CRYPTO_PUBLICKEYBYTES + 8) || check_canary(sk) || check_canary(sk + CRYPTO_SECRETKEYBYTES + 8) || check_canary(sm) || check_canary(sm + MLEN + CRYPTO_BYTES + 8) || check_canary(m) || check_canary(m + MLEN + 8)) { fprintf(stderr, "ERROR canary overwritten\n"); res = 1; goto end; } } end: free(pk_aligned); free(sk_aligned); free(sm_aligned); free(m_aligned); return res; } static int test_sign_detached(void) { /* * In order to properly test variable-length signatures, we need to check * that the implementation does not modify the provided buffer beyond the * reported signature length. We do this by filling the buffer with random * bytes before the call to sign and checking afterward that the tail has * not been modified. */ uint8_t sig_random_cmp[CRYPTO_BYTES]; /* * This is most likely going to be aligned by the compiler. * 16 extra bytes for canary * 1 extra byte for unalignment */ uint8_t *pk_aligned = malloc_s(CRYPTO_PUBLICKEYBYTES + 16 + 1); uint8_t *sk_aligned = malloc_s(CRYPTO_SECRETKEYBYTES + 16 + 1); uint8_t *sig_aligned = malloc_s(CRYPTO_BYTES + 16 + 1); uint8_t *m_aligned = malloc_s(MLEN + 16 + 1); /* * Make sure all pointers are odd. * This ensures that the implementation does not assume anything about the * data alignment. For example this would catch if an implementation * directly uses these pointers to load into vector registers using movdqa. */ uint8_t *pk = (uint8_t *) ((uintptr_t) pk_aligned | (uintptr_t) 1); uint8_t *sk = (uint8_t *) ((uintptr_t) sk_aligned | (uintptr_t) 1); uint8_t *sig = (uint8_t *) ((uintptr_t) sig_aligned | (uintptr_t) 1); uint8_t *m = (uint8_t *) ((uintptr_t) m_aligned | (uintptr_t) 1); size_t siglen; int returncode; int res = 0; int i; /* * Write 8 byte canary before and after the actual memory regions. * This is used to validate that the implementation does not assume * anything about the placement of data in memory * (e.g., assuming that the pk is always behind the sk) */ write_canary(pk); write_canary(pk + CRYPTO_PUBLICKEYBYTES + 8); write_canary(sk); write_canary(sk + CRYPTO_SECRETKEYBYTES + 8); write_canary(sig); write_canary(sig + CRYPTO_BYTES + 8); write_canary(m); write_canary(m + MLEN + 8); for (i = 0; i < NTESTS; i++) { RETURNS_ZERO(crypto_sign_keypair(pk + 8, sk + 8)); randombytes(m + 8, MLEN); // Fill the sig buffer with random bytes randombytes(sig_random_cmp, CRYPTO_BYTES); memcpy(sig + 8, sig_random_cmp, CRYPTO_BYTES); #ifdef PQCLEAN_USE_VALGRIND /* * With this buffer marked as undefined, valgrind will detect * cases where the signing code depends on the value of the tail * of the buffer. */ VALGRIND_MAKE_MEM_UNDEFINED(sig + 8, CRYPTO_BYTES); #endif RETURNS_ZERO(crypto_sign_signature(sig + 8, &siglen, m + 8, MLEN, sk + 8)); #ifdef PQCLEAN_USE_VALGRIND // We have to mark the tail as defined before doing the memcmp. VALGRIND_MAKE_MEM_DEFINED(sig + 8 + siglen, CRYPTO_BYTES - siglen); #endif // check that the tail has not been modified RETURNS_ZERO(memcmp(sig + 8 + siglen, sig_random_cmp + siglen, CRYPTO_BYTES - siglen)); if ((returncode = crypto_sign_verify(sig + 8, siglen, m + 8, MLEN, pk + 8)) != 0) { fprintf(stderr, "ERROR Signature did not verify correctly!\n"); if (returncode > 0) { fprintf(stderr, "ERROR return code should be < 0 on failure"); } res = 1; goto end; } #ifdef PQCLEAN_FALCON_TEST_INTEROP // test verification with the "-padded" or non "-padded" code as appropriate if ((returncode = crypto_sign_verify_interop(sig + 8, siglen, m + 8, MLEN, pk + 8)) != 0) { fprintf(stderr, "ERROR Signature did not verify correctly on interop check!\n"); if (returncode > 0) { fprintf(stderr, "ERROR return code should be < 0 on failure"); } res = 1; goto end; } #endif // Validate that the implementation did not touch the canary if (check_canary(pk) || check_canary(pk + CRYPTO_PUBLICKEYBYTES + 8) || check_canary(sk) || check_canary(sk + CRYPTO_SECRETKEYBYTES + 8) || check_canary(sig) || check_canary(sig + CRYPTO_BYTES + 8) || check_canary(m) || check_canary(m + MLEN + 8)) { fprintf(stderr, "ERROR canary overwritten\n"); res = 1; goto end; } } end: free(pk_aligned); free(sk_aligned); free(sig_aligned); free(m_aligned); return res; } static int test_wrong_pk(void) { uint8_t *pk = malloc_s(CRYPTO_PUBLICKEYBYTES); uint8_t *pk2 = malloc_s(CRYPTO_PUBLICKEYBYTES); uint8_t *sk = malloc_s(CRYPTO_SECRETKEYBYTES); uint8_t *sm = malloc_s(MLEN + CRYPTO_BYTES); uint8_t *m = malloc_s(MLEN); size_t mlen; size_t smlen; int returncode, res = 0; int i; for (i = 0; i < NTESTS; i++) { RETURNS_ZERO(crypto_sign_keypair(pk2, sk)); RETURNS_ZERO(crypto_sign_keypair(pk, sk)); randombytes(m, MLEN); RETURNS_ZERO(crypto_sign(sm, &smlen, m, MLEN, sk)); // By relying on m == sm we prevent having to allocate CRYPTO_BYTES // twice returncode = crypto_sign_open(sm, &mlen, sm, smlen, pk2); if (!returncode) { fprintf(stderr, "ERROR Signature did verify correctly under wrong public key!\n"); if (returncode > 0) { fprintf(stderr, "ERROR return code should be < 0"); } res = 1; goto end; } } end: free(pk); free(pk2); free(sk); free(sm); free(m); return res; } int main(void) { // check if CRYPTO_ALGNAME is printable puts(CRYPTO_ALGNAME); int result = 0; result += test_sign(); result += test_sign_detached(); result += test_wrong_pk(); return result; }