#include "gf.h" #include "parameters.h" #include /** * @file gf.c * Galois field implementation with multiplication using the pclmulqdq instruction */ static uint16_t gf_reduce(uint64_t x, size_t deg_x); /** * Reduces polynomial x modulo primitive polynomial GF_POLY. * @returns x mod GF_POLY * @param[in] x Polynomial of degree less than 64 * @param[in] deg_x The degree of polynomial x */ static uint16_t gf_reduce(uint64_t x, size_t deg_x) { uint16_t z1, z2, rmdr, dist; uint64_t mod; size_t steps, i, j; // Deduce the number of steps of reduction steps = CEIL_DIVIDE(deg_x - (PARAM_M - 1), PARAM_GF_POLY_M2); // Reduce for (i = 0; i < steps; ++i) { mod = x >> PARAM_M; x &= (1 << PARAM_M) - 1; x ^= mod; z1 = 0; rmdr = PARAM_GF_POLY ^ 1; for (j = PARAM_GF_POLY_WT - 2; j; --j) { z2 = __tzcnt_u16(rmdr); dist = (uint16_t) (z2 - z1); mod <<= dist; x ^= mod; rmdr ^= 1 << z2; z1 = z2; } } return x; } /** * Multiplies two elements of GF(2^GF_M). * @returns the product a*b * @param[in] a Element of GF(2^GF_M) * @param[in] b Element of GF(2^GF_M) */ uint16_t PQCLEAN_HQCRMRS192_AVX2_gf_mul(uint16_t a, uint16_t b) { __m128i va = _mm_cvtsi32_si128(a); __m128i vb = _mm_cvtsi32_si128(b); __m128i vab = _mm_clmulepi64_si128(va, vb, 0); uint32_t ab = _mm_cvtsi128_si32(vab); return gf_reduce(ab, 2 * (PARAM_M - 1)); } /** * Compute 16 products in GF(2^GF_M). * @returns the product (a0b0,a1b1,...,a15b15) , ai,bi in GF(2^GF_M) * @param[in] a 256-bit register where a0,..,a15 are stored as 16 bit integers * @param[in] b 256-bit register where b0,..,b15 are stored as 16 bit integer * */ __m256i PQCLEAN_HQCRMRS192_AVX2_gf_mul_vect(__m256i a, __m256i b) { __m128i al = _mm256_extractf128_si256(a, 0); __m128i ah = _mm256_extractf128_si256(a, 1); __m128i bl = _mm256_extractf128_si256(b, 0); __m128i bh = _mm256_extractf128_si256(b, 1); __m128i abl0 = _mm_clmulepi64_si128(al & CONST128_MASKL, bl & CONST128_MASKL, 0x0); abl0 &= CONST128_MIDDLEMASKL; abl0 ^= (_mm_clmulepi64_si128(al & CONST128_MASKH, bl & CONST128_MASKH, 0x0) & CONST128_MIDDLEMASKH); __m128i abh0 = _mm_clmulepi64_si128(al & CONST128_MASKL, bl & CONST128_MASKL, 0x11); abh0 &= CONST128_MIDDLEMASKL; abh0 ^= (_mm_clmulepi64_si128(al & CONST128_MASKH, bl & CONST128_MASKH, 0x11) & CONST128_MIDDLEMASKH); abl0 = _mm_shuffle_epi8(abl0, CONST128_INDEXL); abl0 ^= _mm_shuffle_epi8(abh0, CONST128_INDEXH); __m128i abl1 = _mm_clmulepi64_si128(ah & CONST128_MASKL, bh & CONST128_MASKL, 0x0); abl1 &= CONST128_MIDDLEMASKL; abl1 ^= (_mm_clmulepi64_si128(ah & CONST128_MASKH, bh & CONST128_MASKH, 0x0) & CONST128_MIDDLEMASKH); __m128i abh1 = _mm_clmulepi64_si128(ah & CONST128_MASKL, bh & CONST128_MASKL, 0x11); abh1 &= CONST128_MIDDLEMASKL; abh1 ^= (_mm_clmulepi64_si128(ah & CONST128_MASKH, bh & CONST128_MASKH, 0x11) & CONST128_MIDDLEMASKH); abl1 = _mm_shuffle_epi8(abl1, CONST128_INDEXL); abl1 ^= _mm_shuffle_epi8(abh1, CONST128_INDEXH); __m256i ret = _mm256_set_m128i(abl1, abl0); __m256i aux = CONST256_MR0; for (int32_t i = 0; i < 7; i++) { ret ^= red[i] & _mm256_cmpeq_epi16((ret & aux), aux); aux = aux << 1; } ret &= CONST256_LASTMASK; return ret; } /** * Squares an element of GF(2^GF_M). * @returns a^2 * @param[in] a Element of GF(2^GF_M) */ uint16_t PQCLEAN_HQCRMRS192_AVX2_gf_square(uint16_t a) { uint32_t b = a; uint32_t s = b & 1; for (size_t i = 1; i < PARAM_M; ++i) { b <<= 1; s ^= b & (1 << 2 * i); } return gf_reduce(s, 2 * (PARAM_M - 1)); } /** * Computes the inverse of an element of GF(2^8), * using the addition chain 1 2 3 4 7 11 15 30 60 120 127 254 * @returns the inverse of a * @param[in] a Element of GF(2^GF_M) */ uint16_t PQCLEAN_HQCRMRS192_AVX2_gf_inverse(uint16_t a) { uint16_t inv = a; uint16_t tmp1, tmp2; inv = PQCLEAN_HQCRMRS192_AVX2_gf_square(a); /* a^2 */ tmp1 = PQCLEAN_HQCRMRS192_AVX2_gf_mul(inv, a); /* a^3 */ inv = PQCLEAN_HQCRMRS192_AVX2_gf_square(inv); /* a^4 */ tmp2 = PQCLEAN_HQCRMRS192_AVX2_gf_mul(inv, tmp1); /* a^7 */ tmp1 = PQCLEAN_HQCRMRS192_AVX2_gf_mul(inv, tmp2); /* a^11 */ inv = PQCLEAN_HQCRMRS192_AVX2_gf_mul(tmp1, inv); /* a^15 */ inv = PQCLEAN_HQCRMRS192_AVX2_gf_square(inv); /* a^30 */ inv = PQCLEAN_HQCRMRS192_AVX2_gf_square(inv); /* a^60 */ inv = PQCLEAN_HQCRMRS192_AVX2_gf_square(inv); /* a^120 */ inv = PQCLEAN_HQCRMRS192_AVX2_gf_mul(inv, tmp2); /* a^127 */ inv = PQCLEAN_HQCRMRS192_AVX2_gf_square(inv); /* a^254 */ return inv; } /** * Returns i modulo 2^GF_M-1. * i must be less than 2*(2^GF_M-1). * Therefore, the return value is either i or i-2^GF_M+1. * @returns i mod (2^GF_M-1) * @param[in] i The integer whose modulo is taken */ uint16_t PQCLEAN_HQCRMRS192_AVX2_gf_mod(uint16_t i) { uint16_t tmp = (uint16_t) (i - PARAM_GF_MUL_ORDER); // mask = 0xffff if (i < GF_MUL_ORDER) uint16_t mask = -(tmp >> 15); return tmp + (mask & PARAM_GF_MUL_ORDER); }