#include "code.h" #include "gf2x.h" #include "hqc.h" #include "nistseedexpander.h" #include "parameters.h" #include "parsing.h" #include "randombytes.h" #include "vector.h" #include #include #include /** * @file hqc.c * @brief Implementation of hqc.h */ /** * @brief Keygen of the HQC_PKE IND_CPA scheme * * The public key is composed of the syndrome s as well as the seed used to generate the vector h. * * The secret key is composed of the seed used to generate vectors x and y. * As a technicality, the public key is appended to the secret key in order to respect NIST API. * * @param[out] pk String containing the public key * @param[out] sk String containing the secret key */ void PQCLEAN_HQCRMRS192_AVX2_hqc_pke_keygen(unsigned char *pk, unsigned char *sk) { AES_XOF_struct sk_seedexpander; AES_XOF_struct pk_seedexpander; uint8_t sk_seed[SEED_BYTES] = {0}; uint8_t pk_seed[SEED_BYTES] = {0}; aligned_vec_t vx = {0}; uint64_t *x = vx.arr64; aligned_vec_t vy = {0}; uint64_t *y = vy.arr64; aligned_vec_t vh = {0}; uint64_t *h = vh.arr64; aligned_vec_t vs = {0}; uint64_t *s = vs.arr64; aligned_vec_t vtmp = {0}; uint64_t *tmp = vtmp.arr64; // Create seed_expanders for public key and secret key randombytes(sk_seed, SEED_BYTES); seedexpander_init(&sk_seedexpander, sk_seed, sk_seed + 32, SEEDEXPANDER_MAX_LENGTH); randombytes(pk_seed, SEED_BYTES); seedexpander_init(&pk_seedexpander, pk_seed, pk_seed + 32, SEEDEXPANDER_MAX_LENGTH); // Compute secret key PQCLEAN_HQCRMRS192_AVX2_vect_set_random_fixed_weight(&sk_seedexpander, x, PARAM_OMEGA); PQCLEAN_HQCRMRS192_AVX2_vect_set_random_fixed_weight(&sk_seedexpander, y, PARAM_OMEGA); // Compute public key PQCLEAN_HQCRMRS192_AVX2_vect_set_random(&pk_seedexpander, h); PQCLEAN_HQCRMRS192_AVX2_vect_mul(tmp, &vy, &vh); PQCLEAN_HQCRMRS192_AVX2_vect_add(s, x, tmp, VEC_N_256_SIZE_64); // Parse keys to string PQCLEAN_HQCRMRS192_AVX2_hqc_public_key_to_string(pk, pk_seed, s); PQCLEAN_HQCRMRS192_AVX2_hqc_secret_key_to_string(sk, sk_seed, pk); } /** * @brief Encryption of the HQC_PKE IND_CPA scheme * * The cihertext is composed of vectors u and v. * * @param[out] u Vector u (first part of the ciphertext) * @param[out] v Vector v (second part of the ciphertext) * @param[in] m Vector representing the message to encrypt * @param[in] theta Seed used to derive randomness required for encryption * @param[in] pk String containing the public key */ void PQCLEAN_HQCRMRS192_AVX2_hqc_pke_encrypt(uint64_t *u, uint64_t *v, uint8_t *m, unsigned char *theta, const unsigned char *pk) { AES_XOF_struct seedexpander; aligned_vec_t vh = {0}; uint64_t *h = vh.arr64; aligned_vec_t vs = {0}; uint64_t *s = vs.arr64; aligned_vec_t vr1 = {0}; uint64_t *r1 = vr1.arr64; aligned_vec_t vr2 = {0}; uint64_t *r2 = vr2.arr64; aligned_vec_t ve = {0}; uint64_t *e = ve.arr64; aligned_vec_t vtmp1 = {0}; uint64_t *tmp1 = vtmp1.arr64; aligned_vec_t vtmp2 = {0}; uint64_t *tmp2 = vtmp2.arr64; aligned_vec_t vtmp3 = {0}; uint64_t *tmp3 = vtmp3.arr64; // Create seed_expander from theta seedexpander_init(&seedexpander, theta, theta + 32, SEEDEXPANDER_MAX_LENGTH); // Retrieve h and s from public key PQCLEAN_HQCRMRS192_AVX2_hqc_public_key_from_string(h, s, pk); // Generate r1, r2 and e PQCLEAN_HQCRMRS192_AVX2_vect_set_random_fixed_weight(&seedexpander, r1, PARAM_OMEGA_R); PQCLEAN_HQCRMRS192_AVX2_vect_set_random_fixed_weight(&seedexpander, r2, PARAM_OMEGA_R); PQCLEAN_HQCRMRS192_AVX2_vect_set_random_fixed_weight(&seedexpander, e, PARAM_OMEGA_E); // Compute u = r1 + r2.h PQCLEAN_HQCRMRS192_AVX2_vect_mul(tmp1, &vr2, &vh); PQCLEAN_HQCRMRS192_AVX2_vect_add(u, r1, tmp1, VEC_N_256_SIZE_64); // Compute v = m.G by encoding the message PQCLEAN_HQCRMRS192_AVX2_code_encode((uint8_t *)v, m); PQCLEAN_HQCRMRS192_AVX2_load8_arr(v, VEC_N1N2_256_SIZE_64, (uint8_t *)v, VEC_N1N2_SIZE_BYTES); PQCLEAN_HQCRMRS192_AVX2_vect_resize(tmp1, PARAM_N, v, PARAM_N1N2); // Compute v = m.G + s.r2 + e PQCLEAN_HQCRMRS192_AVX2_vect_mul(tmp2, &vr2, &vs); PQCLEAN_HQCRMRS192_AVX2_vect_add(tmp3, e, tmp2, VEC_N_256_SIZE_64); PQCLEAN_HQCRMRS192_AVX2_vect_add(tmp2, tmp1, tmp3, VEC_N_256_SIZE_64); PQCLEAN_HQCRMRS192_AVX2_vect_resize(v, PARAM_N1N2, tmp2, PARAM_N); } /** * @brief Decryption of the HQC_PKE IND_CPA scheme * * @param[out] m Vector representing the decrypted message * @param[in] u Vector u (first part of the ciphertext) * @param[in] v Vector v (second part of the ciphertext) * @param[in] sk String containing the secret key */ void PQCLEAN_HQCRMRS192_AVX2_hqc_pke_decrypt(uint8_t *m, const uint64_t *u, const uint64_t *v, const unsigned char *sk) { uint8_t pk[PUBLIC_KEY_BYTES] = {0}; aligned_vec_t vx = {0}; uint64_t *x = vx.arr64; aligned_vec_t vy = {0}; uint64_t *y = vy.arr64; aligned_vec_t vtmp1 = {0}; uint64_t *tmp1 = vtmp1.arr64; aligned_vec_t vtmp2 = {0}; uint64_t *tmp2 = vtmp2.arr64; aligned_vec_t vtmp3 = {0}; uint64_t *tmp3 = vtmp3.arr64; // Retrieve x, y, pk from secret key PQCLEAN_HQCRMRS192_AVX2_hqc_secret_key_from_string(x, y, pk, sk); // Compute v - u.y PQCLEAN_HQCRMRS192_AVX2_vect_resize(tmp1, PARAM_N, v, PARAM_N1N2); for (size_t i = 0; i < VEC_N_256_SIZE_64; i++) { tmp2[i] = u[i]; } PQCLEAN_HQCRMRS192_AVX2_vect_mul(tmp3, &vy, &vtmp2); PQCLEAN_HQCRMRS192_AVX2_vect_add(tmp2, tmp1, tmp3, VEC_N_256_SIZE_64); // Compute m by decoding v - u.y PQCLEAN_HQCRMRS192_AVX2_store8_arr((uint8_t *)tmp1, VEC_N_SIZE_BYTES, tmp2, VEC_N_256_SIZE_64); PQCLEAN_HQCRMRS192_AVX2_code_decode(m, (uint8_t *)tmp1); }