/* This file is for secret-key generation */ #include "sk_gen.h" #include "controlbits.h" #include "gf.h" #include "params.h" #include "util.h" /* input: f, element in GF((2^m)^t) */ /* output: out, minimal polynomial of f */ /* return: 0 for success and -1 for failure */ int PQCLEAN_MCELIECE460896_SSE_genpoly_gen(gf *out, gf *f) { int i, j, k, c; gf mat[ SYS_T + 1 ][ SYS_T ]; gf mask, inv, t; // fill matrix mat[0][0] = 1; for (i = 1; i < SYS_T; i++) { mat[0][i] = 0; } for (i = 0; i < SYS_T; i++) { mat[1][i] = f[i]; } for (j = 2; j <= SYS_T; j++) { PQCLEAN_MCELIECE460896_SSE_GF_mul(mat[j], mat[j - 1], f); } // gaussian for (j = 0; j < SYS_T; j++) { for (k = j + 1; k < SYS_T; k++) { mask = PQCLEAN_MCELIECE460896_SSE_gf_iszero(mat[ j ][ j ]); for (c = j; c < SYS_T + 1; c++) { mat[ c ][ j ] ^= mat[ c ][ k ] & mask; } } if ( mat[ j ][ j ] == 0 ) { // return if not systematic return -1; } inv = PQCLEAN_MCELIECE460896_SSE_gf_inv(mat[j][j]); for (c = j; c < SYS_T + 1; c++) { mat[ c ][ j ] = PQCLEAN_MCELIECE460896_SSE_gf_mul(mat[ c ][ j ], inv) ; } for (k = 0; k < SYS_T; k++) { if (k != j) { t = mat[ j ][ k ]; for (c = j; c < SYS_T + 1; c++) { mat[ c ][ k ] ^= PQCLEAN_MCELIECE460896_SSE_gf_mul(mat[ c ][ j ], t); } } } } for (i = 0; i < SYS_T; i++) { out[i] = mat[ SYS_T ][ i ]; } return 0; } /* input: permutation p represented as a list of 32-bit intergers */ /* output: -1 if some interger repeats in p */ /* 0 otherwise */ int PQCLEAN_MCELIECE460896_SSE_perm_check(const uint32_t *p) { int i; uint64_t list[1 << GFBITS]; for (i = 0; i < (1 << GFBITS); i++) { list[i] = p[i]; } PQCLEAN_MCELIECE460896_SSE_sort_63b(1 << GFBITS, list); for (i = 1; i < (1 << GFBITS); i++) { if (list[i - 1] == list[i]) { return -1; } } return 0; }