#include "fips202.h" #include "packing.h" #include "params.h" #include "poly.h" #include "polyvec.h" #include "randombytes.h" #include "sign.h" #include "symmetric.h" #include /************************************************* * Name: crypto_sign_keypair * * Description: Generates public and private key. * * Arguments: - uint8_t *pk: pointer to output public key (allocated * array of CRYPTO_PUBLICKEYBYTES bytes) * - uint8_t *sk: pointer to output private key (allocated * array of CRYPTO_SECRETKEYBYTES bytes) * * Returns 0 (success) **************************************************/ int crypto_sign_keypair(uint8_t *pk, uint8_t *sk) { uint8_t seedbuf[2 * SEEDBYTES + CRHBYTES]; uint8_t tr[SEEDBYTES]; const uint8_t *rho, *rhoprime, *key; polyvecl mat[K]; polyvecl s1, s1hat; polyveck s2, t1, t0; /* Get randomness for rho, rhoprime and key */ randombytes(seedbuf, SEEDBYTES); shake256(seedbuf, 2 * SEEDBYTES + CRHBYTES, seedbuf, SEEDBYTES); rho = seedbuf; rhoprime = rho + SEEDBYTES; key = rhoprime + CRHBYTES; /* Expand matrix */ polyvec_matrix_expand(mat, rho); /* Sample short vectors s1 and s2 */ polyvecl_uniform_eta(&s1, rhoprime, 0); polyveck_uniform_eta(&s2, rhoprime, L); /* Matrix-vector multiplication */ s1hat = s1; polyvecl_ntt(&s1hat); polyvec_matrix_pointwise_montgomery(&t1, mat, &s1hat); polyveck_reduce(&t1); polyveck_invntt_tomont(&t1); /* Add error vector s2 */ polyveck_add(&t1, &t1, &s2); /* Extract t1 and write public key */ polyveck_caddq(&t1); polyveck_power2round(&t1, &t0, &t1); pack_pk(pk, rho, &t1); /* Compute H(rho, t1) and write secret key */ shake256(tr, SEEDBYTES, pk, CRYPTO_PUBLICKEYBYTES); pack_sk(sk, rho, tr, key, &t0, &s1, &s2); return 0; } /************************************************* * Name: crypto_sign_signature * * Description: Computes signature. * * Arguments: - uint8_t *sig: pointer to output signature (of length CRYPTO_BYTES) * - size_t *siglen: pointer to output length of signature * - uint8_t *m: pointer to message to be signed * - size_t mlen: length of message * - uint8_t *sk: pointer to bit-packed secret key * * Returns 0 (success) **************************************************/ int crypto_sign_signature(uint8_t *sig, size_t *siglen, const uint8_t *m, size_t mlen, const uint8_t *sk) { unsigned int n; uint8_t seedbuf[3 * SEEDBYTES + 2 * CRHBYTES]; uint8_t *rho, *tr, *key, *mu, *rhoprime; uint16_t nonce = 0; polyvecl mat[K], s1, y, z; polyveck t0, s2, w1, w0, h; poly cp; shake256incctx state; rho = seedbuf; tr = rho + SEEDBYTES; key = tr + SEEDBYTES; mu = key + SEEDBYTES; rhoprime = mu + CRHBYTES; unpack_sk(rho, tr, key, &t0, &s1, &s2, sk); /* Compute CRH(tr, msg) */ shake256_inc_init(&state); shake256_inc_absorb(&state, tr, SEEDBYTES); shake256_inc_absorb(&state, m, mlen); shake256_inc_finalize(&state); shake256_inc_squeeze(mu, CRHBYTES, &state); shake256_inc_ctx_release(&state); shake256(rhoprime, CRHBYTES, key, SEEDBYTES + CRHBYTES); /* Expand matrix and transform vectors */ polyvec_matrix_expand(mat, rho); polyvecl_ntt(&s1); polyveck_ntt(&s2); polyveck_ntt(&t0); rej: /* Sample intermediate vector y */ polyvecl_uniform_gamma1(&y, rhoprime, nonce++); /* Matrix-vector multiplication */ z = y; polyvecl_ntt(&z); polyvec_matrix_pointwise_montgomery(&w1, mat, &z); polyveck_reduce(&w1); polyveck_invntt_tomont(&w1); /* Decompose w and call the random oracle */ polyveck_caddq(&w1); polyveck_decompose(&w1, &w0, &w1); polyveck_pack_w1(sig, &w1); shake256_inc_init(&state); shake256_inc_absorb(&state, mu, CRHBYTES); shake256_inc_absorb(&state, sig, K * POLYW1_PACKEDBYTES); shake256_inc_finalize(&state); shake256_inc_squeeze(sig, SEEDBYTES, &state); shake256_inc_ctx_release(&state); poly_challenge(&cp, sig); poly_ntt(&cp); /* Compute z, reject if it reveals secret */ polyvecl_pointwise_poly_montgomery(&z, &cp, &s1); polyvecl_invntt_tomont(&z); polyvecl_add(&z, &z, &y); polyvecl_reduce(&z); if (polyvecl_chknorm(&z, GAMMA1 - BETA)) { goto rej; } /* Check that subtracting cs2 does not change high bits of w and low bits * do not reveal secret information */ polyveck_pointwise_poly_montgomery(&h, &cp, &s2); polyveck_invntt_tomont(&h); polyveck_sub(&w0, &w0, &h); polyveck_reduce(&w0); if (polyveck_chknorm(&w0, GAMMA2 - BETA)) { goto rej; } /* Compute hints for w1 */ polyveck_pointwise_poly_montgomery(&h, &cp, &t0); polyveck_invntt_tomont(&h); polyveck_reduce(&h); if (polyveck_chknorm(&h, GAMMA2)) { goto rej; } polyveck_add(&w0, &w0, &h); n = polyveck_make_hint(&h, &w0, &w1); if (n > OMEGA) { goto rej; } /* Write signature */ pack_sig(sig, sig, &z, &h); *siglen = CRYPTO_BYTES; return 0; } /************************************************* * Name: crypto_sign * * Description: Compute signed message. * * Arguments: - uint8_t *sm: pointer to output signed message (allocated * array with CRYPTO_BYTES + mlen bytes), * can be equal to m * - size_t *smlen: pointer to output length of signed * message * - const uint8_t *m: pointer to message to be signed * - size_t mlen: length of message * - const uint8_t *sk: pointer to bit-packed secret key * * Returns 0 (success) **************************************************/ int crypto_sign(uint8_t *sm, size_t *smlen, const uint8_t *m, size_t mlen, const uint8_t *sk) { size_t i; for (i = 0; i < mlen; ++i) { sm[CRYPTO_BYTES + mlen - 1 - i] = m[mlen - 1 - i]; } crypto_sign_signature(sm, smlen, sm + CRYPTO_BYTES, mlen, sk); *smlen += mlen; return 0; } /************************************************* * Name: crypto_sign_verify * * Description: Verifies signature. * * Arguments: - uint8_t *m: pointer to input signature * - size_t siglen: length of signature * - const uint8_t *m: pointer to message * - size_t mlen: length of message * - const uint8_t *pk: pointer to bit-packed public key * * Returns 0 if signature could be verified correctly and -1 otherwise **************************************************/ int crypto_sign_verify(const uint8_t *sig, size_t siglen, const uint8_t *m, size_t mlen, const uint8_t *pk) { unsigned int i; uint8_t buf[K * POLYW1_PACKEDBYTES]; uint8_t rho[SEEDBYTES]; uint8_t mu[CRHBYTES]; uint8_t c[SEEDBYTES]; uint8_t c2[SEEDBYTES]; poly cp; polyvecl mat[K], z; polyveck t1, w1, h; shake256incctx state; if (siglen != CRYPTO_BYTES) { return -1; } unpack_pk(rho, &t1, pk); if (unpack_sig(c, &z, &h, sig)) { return -1; } if (polyvecl_chknorm(&z, GAMMA1 - BETA)) { return -1; } /* Compute CRH(H(rho, t1), msg) */ shake256(mu, SEEDBYTES, pk, CRYPTO_PUBLICKEYBYTES); shake256_inc_init(&state); shake256_inc_absorb(&state, mu, SEEDBYTES); shake256_inc_absorb(&state, m, mlen); shake256_inc_finalize(&state); shake256_inc_squeeze(mu, CRHBYTES, &state); shake256_inc_ctx_release(&state); /* Matrix-vector multiplication; compute Az - c2^dt1 */ poly_challenge(&cp, c); polyvec_matrix_expand(mat, rho); polyvecl_ntt(&z); polyvec_matrix_pointwise_montgomery(&w1, mat, &z); poly_ntt(&cp); polyveck_shiftl(&t1); polyveck_ntt(&t1); polyveck_pointwise_poly_montgomery(&t1, &cp, &t1); polyveck_sub(&w1, &w1, &t1); polyveck_reduce(&w1); polyveck_invntt_tomont(&w1); /* Reconstruct w1 */ polyveck_caddq(&w1); polyveck_use_hint(&w1, &w1, &h); polyveck_pack_w1(buf, &w1); /* Call random oracle and verify challenge */ shake256_inc_init(&state); shake256_inc_absorb(&state, mu, CRHBYTES); shake256_inc_absorb(&state, buf, K * POLYW1_PACKEDBYTES); shake256_inc_finalize(&state); shake256_inc_squeeze(c2, SEEDBYTES, &state); shake256_inc_ctx_release(&state); for (i = 0; i < SEEDBYTES; ++i) { if (c[i] != c2[i]) { return -1; } } return 0; } /************************************************* * Name: crypto_sign_open * * Description: Verify signed message. * * Arguments: - uint8_t *m: pointer to output message (allocated * array with smlen bytes), can be equal to sm * - size_t *mlen: pointer to output length of message * - const uint8_t *sm: pointer to signed message * - size_t smlen: length of signed message * - const uint8_t *pk: pointer to bit-packed public key * * Returns 0 if signed message could be verified correctly and -1 otherwise **************************************************/ int crypto_sign_open(uint8_t *m, size_t *mlen, const uint8_t *sm, size_t smlen, const uint8_t *pk) { size_t i; if (smlen < CRYPTO_BYTES) { goto badsig; } *mlen = smlen - CRYPTO_BYTES; if (crypto_sign_verify(sm, CRYPTO_BYTES, sm + CRYPTO_BYTES, *mlen, pk)) { goto badsig; } else { /* All good, copy msg, return 0 */ for (i = 0; i < *mlen; ++i) { m[i] = sm[CRYPTO_BYTES + i]; } return 0; } badsig: /* Signature verification failed */ *mlen = (size_t) -1; for (i = 0; i < smlen; ++i) { m[i] = 0; } return -1; }