#include "inner.h" /* * Floating-point operations. * * This file implements the non-inline functions declared in * fpr.h, as well as the constants for FFT / iFFT. * * ==========================(LICENSE BEGIN)============================ * * Copyright (c) 2017-2019 Falcon Project * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sublicense, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY * CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * * ===========================(LICENSE END)============================= * * @author Thomas Pornin <thomas.pornin@nccgroup.com> */ /* * Normalize a provided unsigned integer to the 2^63..2^64-1 range by * left-shifting it if necessary. The exponent e is adjusted accordingly * (i.e. if the value was left-shifted by n bits, then n is subtracted * from e). If source m is 0, then it remains 0, but e is altered. * Both m and e must be simple variables (no expressions allowed). */ #define FPR_NORM64(m, e) do { \ uint32_t nt; \ \ (e) -= 63; \ \ nt = (uint32_t)((m) >> 32); \ nt = (nt | -nt) >> 31; \ (m) ^= ((m) ^ ((m) << 32)) & ((uint64_t)nt - 1); \ (e) += (int)(nt << 5); \ \ nt = (uint32_t)((m) >> 48); \ nt = (nt | -nt) >> 31; \ (m) ^= ((m) ^ ((m) << 16)) & ((uint64_t)nt - 1); \ (e) += (int)(nt << 4); \ \ nt = (uint32_t)((m) >> 56); \ nt = (nt | -nt) >> 31; \ (m) ^= ((m) ^ ((m) << 8)) & ((uint64_t)nt - 1); \ (e) += (int)(nt << 3); \ \ nt = (uint32_t)((m) >> 60); \ nt = (nt | -nt) >> 31; \ (m) ^= ((m) ^ ((m) << 4)) & ((uint64_t)nt - 1); \ (e) += (int)(nt << 2); \ \ nt = (uint32_t)((m) >> 62); \ nt = (nt | -nt) >> 31; \ (m) ^= ((m) ^ ((m) << 2)) & ((uint64_t)nt - 1); \ (e) += (int)(nt << 1); \ \ nt = (uint32_t)((m) >> 63); \ (m) ^= ((m) ^ ((m) << 1)) & ((uint64_t)nt - 1); \ (e) += (int)(nt); \ } while (0) uint64_t fpr_ursh(uint64_t x, int n) { x ^= (x ^ (x >> 32)) & -(uint64_t)(n >> 5); return x >> (n & 31); } int64_t fpr_irsh(int64_t x, int n) { x ^= (x ^ (x >> 32)) & -(int64_t)(n >> 5); return x >> (n & 31); } uint64_t fpr_ulsh(uint64_t x, int n) { x ^= (x ^ (x << 32)) & -(uint64_t)(n >> 5); return x << (n & 31); } fpr FPR(int s, int e, uint64_t m) { fpr x; uint32_t t; unsigned f; /* * If e >= -1076, then the value is "normal"; otherwise, it * should be a subnormal, which we clamp down to zero. */ e += 1076; t = (uint32_t)e >> 31; m &= (uint64_t)t - 1; /* * If m = 0 then we want a zero; make e = 0 too, but conserve * the sign. */ t = (uint32_t)(m >> 54); e &= -(int)t; /* * The 52 mantissa bits come from m. Value m has its top bit set * (unless it is a zero); we leave it "as is": the top bit will * increment the exponent by 1, except when m = 0, which is * exactly what we want. */ x = (((uint64_t)s << 63) | (m >> 2)) + ((uint64_t)(uint32_t)e << 52); /* * Rounding: if the low three bits of m are 011, 110 or 111, * then the value should be incremented to get the next * representable value. This implements the usual * round-to-nearest rule (with preference to even values in case * of a tie). Note that the increment may make a carry spill * into the exponent field, which is again exactly what we want * in that case. */ f = (unsigned)m & 7U; x += (0xC8U >> f) & 1; return x; } fpr fpr_scaled(int64_t i, int sc) { /* * To convert from int to float, we have to do the following: * 1. Get the absolute value of the input, and its sign * 2. Shift right or left the value as appropriate * 3. Pack the result * * We can assume that the source integer is not -2^63. */ int s, e; uint32_t t; uint64_t m; /* * Extract sign bit. * We have: -i = 1 + ~i */ s = (int)((uint64_t)i >> 63); i ^= -(int64_t)s; i += s; /* * For now we suppose that i != 0. * Otherwise, we set m to i and left-shift it as much as needed * to get a 1 in the top bit. We can do that in a logarithmic * number of conditional shifts. */ m = (uint64_t)i; e = 9 + sc; FPR_NORM64(m, e); /* * Now m is in the 2^63..2^64-1 range. We must divide it by 512; * if one of the dropped bits is a 1, this should go into the * "sticky bit". */ m |= ((uint32_t)m & 0x1FF) + 0x1FF; m >>= 9; /* * Corrective action: if i = 0 then all of the above was * incorrect, and we clamp e and m down to zero. */ t = (uint32_t)((uint64_t)(i | -i) >> 63); m &= -(uint64_t)t; e &= -(int)t; /* * Assemble back everything. The FPR() function will handle cases * where e is too low. */ return FPR(s, e, m); } fpr fpr_of(int64_t i) { return fpr_scaled(i, 0); } int64_t fpr_rint(fpr x) { uint64_t m, d; int e; uint32_t s, dd, f; /* * We assume that the value fits in -(2^63-1)..+(2^63-1). We can * thus extract the mantissa as a 63-bit integer, then right-shift * it as needed. */ m = ((x << 10) | ((uint64_t)1 << 62)) & (((uint64_t)1 << 63) - 1); e = 1085 - ((int)(x >> 52) & 0x7FF); /* * If a shift of more than 63 bits is needed, then simply set m * to zero. This also covers the case of an input operand equal * to zero. */ m &= -(uint64_t)((uint32_t)(e - 64) >> 31); e &= 63; /* * Right-shift m as needed. Shift count is e. Proper rounding * mandates that: * - If the highest dropped bit is zero, then round low. * - If the highest dropped bit is one, and at least one of the * other dropped bits is one, then round up. * - If the highest dropped bit is one, and all other dropped * bits are zero, then round up if the lowest kept bit is 1, * or low otherwise (i.e. ties are broken by "rounding to even"). * * We thus first extract a word consisting of all the dropped bit * AND the lowest kept bit; then we shrink it down to three bits, * the lowest being "sticky". */ d = fpr_ulsh(m, 63 - e); dd = (uint32_t)d | ((uint32_t)(d >> 32) & 0x1FFFFFFF); f = (uint32_t)(d >> 61) | ((dd | -dd) >> 31); m = fpr_ursh(m, e) + (uint64_t)((0xC8U >> f) & 1U); /* * Apply the sign bit. */ s = (uint32_t)(x >> 63); return ((int64_t)m ^ -(int64_t)s) + (int64_t)s; } int64_t fpr_floor(fpr x) { uint64_t t; int64_t xi; int e, cc; /* * We extract the integer as a _signed_ 64-bit integer with * a scaling factor. Since we assume that the value fits * in the -(2^63-1)..+(2^63-1) range, we can left-shift the * absolute value to make it in the 2^62..2^63-1 range: we * will only need a right-shift afterwards. */ e = (int)(x >> 52) & 0x7FF; t = x >> 63; xi = (int64_t)(((x << 10) | ((uint64_t)1 << 62)) & (((uint64_t)1 << 63) - 1)); xi = (xi ^ -(int64_t)t) + (int64_t)t; cc = 1085 - e; /* * We perform an arithmetic right-shift on the value. This * applies floor() semantics on both positive and negative values * (rounding toward minus infinity). */ xi = fpr_irsh(xi, cc & 63); /* * If the true shift count was 64 or more, then we should instead * replace xi with 0 (if nonnegative) or -1 (if negative). Edge * case: -0 will be floored to -1, not 0 (whether this is correct * is debatable; in any case, the other functions normalize zero * to +0). * * For an input of zero, the non-shifted xi was incorrect (we used * a top implicit bit of value 1, not 0), but this does not matter * since this operation will clamp it down. */ xi ^= (xi ^ -(int64_t)t) & -(int64_t)((uint32_t)(63 - cc) >> 31); return xi; } int64_t fpr_trunc(fpr x) { uint64_t t, xu; int e, cc; /* * Extract the absolute value. Since we assume that the value * fits in the -(2^63-1)..+(2^63-1) range, we can left-shift * the absolute value into the 2^62..2^63-1 range, and then * do a right shift afterwards. */ e = (int)(x >> 52) & 0x7FF; xu = ((x << 10) | ((uint64_t)1 << 62)) & (((uint64_t)1 << 63) - 1); cc = 1085 - e; xu = fpr_ursh(xu, cc & 63); /* * If the exponent is too low (cc > 63), then the shift was wrong * and we must clamp the value to 0. This also covers the case * of an input equal to zero. */ xu &= -(uint64_t)((uint32_t)(cc - 64) >> 31); /* * Apply back the sign, if the source value is negative. */ t = x >> 63; xu = (xu ^ -t) + t; return *(int64_t *)&xu; } fpr fpr_add(fpr x, fpr y) { uint64_t m, xu, yu, za; uint32_t cs; int ex, ey, sx, sy, cc; /* * Make sure that the first operand (x) has the larger absolute * value. This guarantees that the exponent of y is less than * or equal to the exponent of x, and, if they are equal, then * the mantissa of y will not be greater than the mantissa of x. * * After this swap, the result will have the sign x, except in * the following edge case: abs(x) = abs(y), and x and y have * opposite sign bits; in that case, the result shall be +0 * even if the sign bit of x is 1. To handle this case properly, * we do the swap is abs(x) = abs(y) AND the sign of x is 1. */ m = ((uint64_t)1 << 63) - 1; za = (x & m) - (y & m); cs = (uint32_t)(za >> 63) | ((1U - (uint32_t)(-za >> 63)) & (uint32_t)(x >> 63)); m = (x ^ y) & -(uint64_t)cs; x ^= m; y ^= m; /* * Extract sign bits, exponents and mantissas. The mantissas are * scaled up to 2^55..2^56-1, and the exponent is unbiased. If * an operand is zero, its mantissa is set to 0 at this step, and * its exponent will be -1078. */ ex = (int)(x >> 52); sx = ex >> 11; ex &= 0x7FF; m = (uint64_t)(uint32_t)((ex + 0x7FF) >> 11) << 52; xu = ((x & (((uint64_t)1 << 52) - 1)) | m) << 3; ex -= 1078; ey = (int)(y >> 52); sy = ey >> 11; ey &= 0x7FF; m = (uint64_t)(uint32_t)((ey + 0x7FF) >> 11) << 52; yu = ((y & (((uint64_t)1 << 52) - 1)) | m) << 3; ey -= 1078; /* * x has the larger exponent; hence, we only need to right-shift y. * If the shift count is larger than 59 bits then we clamp the * value to zero. */ cc = ex - ey; yu &= -(uint64_t)((uint32_t)(cc - 60) >> 31); cc &= 63; /* * The lowest bit of yu is "sticky". */ m = fpr_ulsh(1, cc) - 1; yu |= (yu & m) + m; yu = fpr_ursh(yu, cc); /* * If the operands have the same sign, then we add the mantissas; * otherwise, we subtract the mantissas. */ xu += yu - ((yu << 1) & -(uint64_t)(sx ^ sy)); /* * The result may be smaller, or slightly larger. We normalize * it to the 2^63..2^64-1 range (if xu is zero, then it stays * at zero). */ FPR_NORM64(xu, ex); /* * Scale down the value to 2^54..s^55-1, handling the last bit * as sticky. */ xu |= ((uint32_t)xu & 0x1FF) + 0x1FF; xu >>= 9; ex += 9; /* * In general, the result has the sign of x. However, if the * result is exactly zero, then the following situations may * be encountered: * x > 0, y = -x -> result should be +0 * x < 0, y = -x -> result should be +0 * x = +0, y = +0 -> result should be +0 * x = -0, y = +0 -> result should be +0 * x = +0, y = -0 -> result should be +0 * x = -0, y = -0 -> result should be -0 * * But at the conditional swap step at the start of the * function, we ensured that if abs(x) = abs(y) and the * sign of x was 1, then x and y were swapped. Thus, the * two following cases cannot actually happen: * x < 0, y = -x * x = -0, y = +0 * In all other cases, the sign bit of x is conserved, which * is what the FPR() function does. The FPR() function also * properly clamps values to zero when the exponent is too * low, but does not alter the sign in that case. */ return FPR(sx, ex, xu); } fpr fpr_sub(fpr x, fpr y) { y ^= (uint64_t)1 << 63; return fpr_add(x, y); } fpr fpr_neg(fpr x) { x ^= (uint64_t)1 << 63; return x; } fpr fpr_half(fpr x) { /* * To divide a value by 2, we just have to subtract 1 from its * exponent, but we have to take care of zero. */ uint32_t t; x -= (uint64_t)1 << 52; t = (((uint32_t)(x >> 52) & 0x7FF) + 1) >> 11; x &= (uint64_t)t - 1; return x; } fpr fpr_double(fpr x) { /* * To double a value, we just increment by one the exponent. We * don't care about infinites or NaNs; however, 0 is a * special case. */ x += (uint64_t)((((unsigned)(x >> 52) & 0x7FFU) + 0x7FFU) >> 11) << 52; return x; } fpr fpr_mul(fpr x, fpr y) { uint64_t xu, yu, w, zu, zv; uint32_t x0, x1, y0, y1, z0, z1, z2; int ex, ey, d, e, s; /* * Extract absolute values as scaled unsigned integers. We * don't extract exponents yet. */ xu = (x & (((uint64_t)1 << 52) - 1)) | ((uint64_t)1 << 52); yu = (y & (((uint64_t)1 << 52) - 1)) | ((uint64_t)1 << 52); /* * We have two 53-bit integers to multiply; we need to split * each into a lower half and a upper half. Moreover, we * prefer to have lower halves to be of 25 bits each, for * reasons explained later on. */ x0 = (uint32_t)xu & 0x01FFFFFF; x1 = (uint32_t)(xu >> 25); y0 = (uint32_t)yu & 0x01FFFFFF; y1 = (uint32_t)(yu >> 25); w = (uint64_t)x0 * (uint64_t)y0; z0 = (uint32_t)w & 0x01FFFFFF; z1 = (uint32_t)(w >> 25); w = (uint64_t)x0 * (uint64_t)y1; z1 += (uint32_t)w & 0x01FFFFFF; z2 = (uint32_t)(w >> 25); w = (uint64_t)x1 * (uint64_t)y0; z1 += (uint32_t)w & 0x01FFFFFF; z2 += (uint32_t)(w >> 25); zu = (uint64_t)x1 * (uint64_t)y1; z2 += (z1 >> 25); z1 &= 0x01FFFFFF; zu += z2; /* * Since xu and yu are both in the 2^52..2^53-1 range, the * product is in the 2^104..2^106-1 range. We first reassemble * it and round it into the 2^54..2^56-1 range; the bottom bit * is made "sticky". Since the low limbs z0 and z1 are 25 bits * each, we just take the upper part (zu), and consider z0 and * z1 only for purposes of stickiness. * (This is the reason why we chose 25-bit limbs above.) */ zu |= ((z0 | z1) + 0x01FFFFFF) >> 25; /* * We normalize zu to the 2^54..s^55-1 range: it could be one * bit too large at this point. This is done with a conditional * right-shift that takes into account the sticky bit. */ zv = (zu >> 1) | (zu & 1); w = zu >> 55; zu ^= (zu ^ zv) & -w; /* * Get the aggregate scaling factor: * * - Each exponent is biased by 1023. * * - Integral mantissas are scaled by 2^52, hence an * extra 52 bias for each exponent. * * - However, we right-shifted z by 50 bits, and then * by 0 or 1 extra bit (depending on the value of w). * * In total, we must add the exponents, then subtract * 2 * (1023 + 52), then add 50 + w. */ ex = (int)((x >> 52) & 0x7FF); ey = (int)((y >> 52) & 0x7FF); e = ex + ey - 2100 + (int)w; /* * Sign bit is the XOR of the operand sign bits. */ s = (int)((x ^ y) >> 63); /* * Corrective actions for zeros: if either of the operands is * zero, then the computations above were wrong. Test for zero * is whether ex or ey is zero. We just have to set the mantissa * (zu) to zero, the FPR() function will normalize e. */ d = ((ex + 0x7FF) & (ey + 0x7FF)) >> 11; zu &= -(uint64_t)d; /* * FPR() packs the result and applies proper rounding. */ return FPR(s, e, zu); } fpr fpr_sqr(fpr x) { return fpr_mul(x, x); } fpr fpr_div(fpr x, fpr y) { uint64_t xu, yu, q, q2, w; int i, ex, ey, e, d, s; /* * Extract mantissas of x and y (unsigned). */ xu = (x & (((uint64_t)1 << 52) - 1)) | ((uint64_t)1 << 52); yu = (y & (((uint64_t)1 << 52) - 1)) | ((uint64_t)1 << 52); /* * Perform bit-by-bit division of xu by yu. We run it for 55 bits. */ q = 0; for (i = 0; i < 55; i ++) { /* * If yu is less than or equal xu, then subtract it and * push a 1 in the quotient; otherwise, leave xu unchanged * and push a 0. */ uint64_t b; b = ((xu - yu) >> 63) - 1; xu -= b & yu; q |= b & 1; xu <<= 1; q <<= 1; } /* * We got 55 bits in the quotient, followed by an extra zero. We * want that 56th bit to be "sticky": it should be a 1 if and * only if the remainder (xu) is non-zero. */ q |= (xu | -xu) >> 63; /* * Quotient is at most 2^56-1. Its top bit may be zero, but in * that case the next-to-top bit will be a one, since the * initial xu and yu were both in the 2^52..2^53-1 range. * We perform a conditional shift to normalize q to the * 2^54..2^55-1 range (with the bottom bit being sticky). */ q2 = (q >> 1) | (q & 1); w = q >> 55; q ^= (q ^ q2) & -w; /* * Extract exponents to compute the scaling factor: * * - Each exponent is biased and we scaled them up by * 52 bits; but these biases will cancel out. * * - The division loop produced a 55-bit shifted result, * so we must scale it down by 55 bits. * * - If w = 1, we right-shifted the integer by 1 bit, * hence we must add 1 to the scaling. */ ex = (int)((x >> 52) & 0x7FF); ey = (int)((y >> 52) & 0x7FF); e = ex - ey - 55 + (int)w; /* * Sign is the XOR of the signs of the operands. */ s = (int)((x ^ y) >> 63); /* * Corrective actions for zeros: if x = 0, then the computation * is wrong, and we must clamp e and q to 0. We do not care * about the case y = 0 (as per assumptions in this module, * the caller does not perform divisions by zero). */ d = (ex + 0x7FF) >> 11; s &= d; e &= -d; q &= -(uint64_t)d; /* * FPR() packs the result and applies proper rounding. */ return FPR(s, e, q); } fpr fpr_inv(fpr x) { return fpr_div(4607182418800017408u, x); } fpr fpr_sqrt(fpr x) { uint64_t xu, q, s, r; int ex, e; /* * Extract the mantissa and the exponent. We don't care about * the sign: by assumption, the operand is nonnegative. * We want the "true" exponent corresponding to a mantissa * in the 1..2 range. */ xu = (x & (((uint64_t)1 << 52) - 1)) | ((uint64_t)1 << 52); ex = (int)((x >> 52) & 0x7FF); e = ex - 1023; /* * If the exponent is odd, double the mantissa and decrement * the exponent. The exponent is then halved to account for * the square root. */ xu += xu & -(uint64_t)(e & 1); e >>= 1; /* * Double the mantissa. */ xu <<= 1; /* * We now have a mantissa in the 2^53..2^55-1 range. It * represents a value between 1 (inclusive) and 4 (exclusive) * in fixed point notation (with 53 fractional bits). We * compute the square root bit by bit. */ q = 0; s = 0; r = (uint64_t)1 << 53; for (int i = 0; i < 54; i ++) { uint64_t t, b; t = s + r; b = ((xu - t) >> 63) - 1; s += (r << 1) & b; xu -= t & b; q += r & b; xu <<= 1; r >>= 1; } /* * Now, q is a rounded-low 54-bit value, with a leading 1, * 52 fractional digits, and an additional guard bit. We add * an extra sticky bit to account for what remains of the operand. */ q <<= 1; q |= (xu | -xu) >> 63; /* * Result q is in the 2^54..2^55-1 range; we bias the exponent * by 54 bits (the value e at that point contains the "true" * exponent, but q is now considered an integer, i.e. scaled * up. */ e -= 54; /* * Corrective action for an operand of value zero. */ q &= -(uint64_t)((ex + 0x7FF) >> 11); /* * Apply rounding and back result. */ return FPR(0, e, q); } int fpr_lt(fpr x, fpr y) { /* * If both x and y are positive, then a signed comparison yields * the proper result: * - For positive values, the order is preserved. * - The sign bit is at the same place as in integers, so * sign is preserved. * Moreover, we can compute [x < y] as sgn(x-y) and the computation * of x-y will not overflow. * * If the signs differ, then sgn(x) gives the proper result. * * If both x and y are negative, then the order is reversed. * Hence [x < y] = sgn(y-x). We must compute this separately from * sgn(x-y); simply inverting sgn(x-y) would not handle the edge * case x = y properly. */ int cc0, cc1; int64_t sx; int64_t sy; sx = *(int64_t *)&x; sy = *(int64_t *)&y; sy &= ~((sx ^ sy) >> 63); /* set sy=0 if signs differ */ cc0 = (int)((sx - sy) >> 63) & 1; /* Neither subtraction overflows when */ cc1 = (int)((sy - sx) >> 63) & 1; /* the signs are the same. */ return cc0 ^ ((cc0 ^ cc1) & (int)((x & y) >> 63)); } uint64_t fpr_expm_p63(fpr x, fpr ccs) { /* * Polynomial approximation of exp(-x) is taken from FACCT: * https://eprint.iacr.org/2018/1234 * Specifically, values are extracted from the implementation * referenced from the FACCT article, and available at: * https://github.com/raykzhao/gaussian * Here, the coefficients have been scaled up by 2^63 and * converted to integers. * * Tests over more than 24 billions of random inputs in the * 0..log(2) range have never shown a deviation larger than * 2^(-50) from the true mathematical value. */ static const uint64_t C[] = { 0x00000004741183A3u, 0x00000036548CFC06u, 0x0000024FDCBF140Au, 0x0000171D939DE045u, 0x0000D00CF58F6F84u, 0x000680681CF796E3u, 0x002D82D8305B0FEAu, 0x011111110E066FD0u, 0x0555555555070F00u, 0x155555555581FF00u, 0x400000000002B400u, 0x7FFFFFFFFFFF4800u, 0x8000000000000000u }; uint64_t z, y; size_t u; uint32_t z0, z1, y0, y1; uint64_t a, b; y = C[0]; z = (uint64_t)fpr_trunc(fpr_mul(x, fpr_ptwo63)) << 1; for (u = 1; u < (sizeof C) / sizeof(C[0]); u ++) { /* * Compute product z * y over 128 bits, but keep only * the top 64 bits. * * TODO: On some architectures/compilers we could use * some intrinsics (__umulh() on MSVC) or other compiler * extensions (unsigned __int128 on GCC / Clang) for * improved speed; however, most 64-bit architectures * also have appropriate IEEE754 floating-point support, * which is better. */ uint64_t c; z0 = (uint32_t)z; z1 = (uint32_t)(z >> 32); y0 = (uint32_t)y; y1 = (uint32_t)(y >> 32); a = ((uint64_t)z0 * (uint64_t)y1) + (((uint64_t)z0 * (uint64_t)y0) >> 32); b = ((uint64_t)z1 * (uint64_t)y0); c = (a >> 32) + (b >> 32); c += (((uint64_t)(uint32_t)a + (uint64_t)(uint32_t)b) >> 32); c += (uint64_t)z1 * (uint64_t)y1; y = C[u] - c; } /* * The scaling factor must be applied at the end. Since y is now * in fixed-point notation, we have to convert the factor to the * same format, and do an extra integer multiplication. */ z = (uint64_t)fpr_trunc(fpr_mul(ccs, fpr_ptwo63)) << 1; z0 = (uint32_t)z; z1 = (uint32_t)(z >> 32); y0 = (uint32_t)y; y1 = (uint32_t)(y >> 32); a = ((uint64_t)z0 * (uint64_t)y1) + (((uint64_t)z0 * (uint64_t)y0) >> 32); b = ((uint64_t)z1 * (uint64_t)y0); y = (a >> 32) + (b >> 32); y += (((uint64_t)(uint32_t)a + (uint64_t)(uint32_t)b) >> 32); y += (uint64_t)z1 * (uint64_t)y1; return y; } const fpr fpr_gm_tab[] = { 0, 0, 9223372036854775808U, 4607182418800017408U, 4604544271217802189U, 4604544271217802189U, 13827916308072577997U, 4604544271217802189U, 4606496786581982534U, 4600565431771507043U, 13823937468626282851U, 4606496786581982534U, 4600565431771507043U, 4606496786581982534U, 13829868823436758342U, 4600565431771507043U, 4607009347991985328U, 4596196889902818827U, 13819568926757594635U, 4607009347991985328U, 4603179351334086856U, 4605664432017547683U, 13829036468872323491U, 4603179351334086856U, 4605664432017547683U, 4603179351334086856U, 13826551388188862664U, 4605664432017547683U, 4596196889902818827U, 4607009347991985328U, 13830381384846761136U, 4596196889902818827U, 4607139046673687846U, 4591727299969791020U, 13815099336824566828U, 4607139046673687846U, 4603889326261607894U, 4605137878724712257U, 13828509915579488065U, 4603889326261607894U, 4606118860100255153U, 4602163548591158843U, 13825535585445934651U, 4606118860100255153U, 4598900923775164166U, 4606794571824115162U, 13830166608678890970U, 4598900923775164166U, 4606794571824115162U, 4598900923775164166U, 13822272960629939974U, 4606794571824115162U, 4602163548591158843U, 4606118860100255153U, 13829490896955030961U, 4602163548591158843U, 4605137878724712257U, 4603889326261607894U, 13827261363116383702U, 4605137878724712257U, 4591727299969791020U, 4607139046673687846U, 13830511083528463654U, 4591727299969791020U, 4607171569234046334U, 4587232218149935124U, 13810604255004710932U, 4607171569234046334U, 4604224084862889120U, 4604849113969373103U, 13828221150824148911U, 4604224084862889120U, 4606317631232591731U, 4601373767755717824U, 13824745804610493632U, 4606317631232591731U, 4599740487990714333U, 4606655894547498725U, 13830027931402274533U, 4599740487990714333U, 4606912484326125783U, 4597922303871901467U, 13821294340726677275U, 4606912484326125783U, 4602805845399633902U, 4605900952042040894U, 13829272988896816702U, 4602805845399633902U, 4605409869824231233U, 4603540801876750389U, 13826912838731526197U, 4605409869824231233U, 4594454542771183930U, 4607084929468638487U, 13830456966323414295U, 4594454542771183930U, 4607084929468638487U, 4594454542771183930U, 13817826579625959738U, 4607084929468638487U, 4603540801876750389U, 4605409869824231233U, 13828781906679007041U, 4603540801876750389U, 4605900952042040894U, 4602805845399633902U, 13826177882254409710U, 4605900952042040894U, 4597922303871901467U, 4606912484326125783U, 13830284521180901591U, 4597922303871901467U, 4606655894547498725U, 4599740487990714333U, 13823112524845490141U, 4606655894547498725U, 4601373767755717824U, 4606317631232591731U, 13829689668087367539U, 4601373767755717824U, 4604849113969373103U, 4604224084862889120U, 13827596121717664928U, 4604849113969373103U, 4587232218149935124U, 4607171569234046334U, 13830543606088822142U, 4587232218149935124U, 4607179706000002317U, 4582730748936808062U, 13806102785791583870U, 4607179706000002317U, 4604386048625945823U, 4604698657331085206U, 13828070694185861014U, 4604386048625945823U, 4606409688975526202U, 4600971798440897930U, 13824343835295673738U, 4606409688975526202U, 4600154912527631775U, 4606578871587619388U, 13829950908442395196U, 4600154912527631775U, 4606963563043808649U, 4597061974398750563U, 13820434011253526371U, 4606963563043808649U, 4602994049708411683U, 4605784983948558848U, 13829157020803334656U, 4602994049708411683U, 4605539368864982914U, 4603361638657888991U, 13826733675512664799U, 4605539368864982914U, 4595327571478659014U, 4607049811591515049U, 13830421848446290857U, 4595327571478659014U, 4607114680469659603U, 4593485039402578702U, 13816857076257354510U, 4607114680469659603U, 4603716733069447353U, 4605276012900672507U, 13828648049755448315U, 4603716733069447353U, 4606012266443150634U, 4602550884377336506U, 13825922921232112314U, 4606012266443150634U, 4598476289818621559U, 4606856142606846307U, 13830228179461622115U, 4598476289818621559U, 4606727809065869586U, 4599322407794599425U, 13822694444649375233U, 4606727809065869586U, 4601771097584682078U, 4606220668805321205U, 13829592705660097013U, 4601771097584682078U, 4604995550503212910U, 4604058477489546729U, 13827430514344322537U, 4604995550503212910U, 4589965306122607094U, 4607158013403433018U, 13830530050258208826U, 4589965306122607094U, 4607158013403433018U, 4589965306122607094U, 13813337342977382902U, 4607158013403433018U, 4604058477489546729U, 4604995550503212910U, 13828367587357988718U, 4604058477489546729U, 4606220668805321205U, 4601771097584682078U, 13825143134439457886U, 4606220668805321205U, 4599322407794599425U, 4606727809065869586U, 13830099845920645394U, 4599322407794599425U, 4606856142606846307U, 4598476289818621559U, 13821848326673397367U, 4606856142606846307U, 4602550884377336506U, 4606012266443150634U, 13829384303297926442U, 4602550884377336506U, 4605276012900672507U, 4603716733069447353U, 13827088769924223161U, 4605276012900672507U, 4593485039402578702U, 4607114680469659603U, 13830486717324435411U, 4593485039402578702U, 4607049811591515049U, 4595327571478659014U, 13818699608333434822U, 4607049811591515049U, 4603361638657888991U, 4605539368864982914U, 13828911405719758722U, 4603361638657888991U, 4605784983948558848U, 4602994049708411683U, 13826366086563187491U, 4605784983948558848U, 4597061974398750563U, 4606963563043808649U, 13830335599898584457U, 4597061974398750563U, 4606578871587619388U, 4600154912527631775U, 13823526949382407583U, 4606578871587619388U, 4600971798440897930U, 4606409688975526202U, 13829781725830302010U, 4600971798440897930U, 4604698657331085206U, 4604386048625945823U, 13827758085480721631U, 4604698657331085206U, 4582730748936808062U, 4607179706000002317U, 13830551742854778125U, 4582730748936808062U, 4607181740574479067U, 4578227681973159812U, 13801599718827935620U, 4607181740574479067U, 4604465633578481725U, 4604621949701367983U, 13827993986556143791U, 4604465633578481725U, 4606453861145241227U, 4600769149537129431U, 13824141186391905239U, 4606453861145241227U, 4600360675823176935U, 4606538458821337243U, 13829910495676113051U, 4600360675823176935U, 4606987119037722413U, 4596629994023683153U, 13820002030878458961U, 4606987119037722413U, 4603087070374583113U, 4605725276488455441U, 13829097313343231249U, 4603087070374583113U, 4605602459698789090U, 4603270878689749849U, 13826642915544525657U, 4605602459698789090U, 4595762727260045105U, 4607030246558998647U, 13830402283413774455U, 4595762727260045105U, 4607127537664763515U, 4592606767730311893U, 13815978804585087701U, 4607127537664763515U, 4603803453461190356U, 4605207475328619533U, 13828579512183395341U, 4603803453461190356U, 4606066157444814153U, 4602357870542944470U, 13825729907397720278U, 4606066157444814153U, 4598688984595225406U, 4606826008603986804U, 13830198045458762612U, 4598688984595225406U, 4606761837001494797U, 4599112075441176914U, 13822484112295952722U, 4606761837001494797U, 4601967947786150793U, 4606170366472647579U, 13829542403327423387U, 4601967947786150793U, 4605067233569943231U, 4603974338538572089U, 13827346375393347897U, 4605067233569943231U, 4590846768565625881U, 4607149205763218185U, 13830521242617993993U, 4590846768565625881U, 4607165468267934125U, 4588998070480937184U, 13812370107335712992U, 4607165468267934125U, 4604141730443515286U, 4604922840319727473U, 13828294877174503281U, 4604141730443515286U, 4606269759522929756U, 4601573027631668967U, 13824945064486444775U, 4606269759522929756U, 4599531889160152938U, 4606692493141721470U, 13830064529996497278U, 4599531889160152938U, 4606884969294623682U, 4598262871476403630U, 13821634908331179438U, 4606884969294623682U, 4602710690099904183U, 4605957195211051218U, 13829329232065827026U, 4602710690099904183U, 4605343481119364930U, 4603629178146150899U, 13827001215000926707U, 4605343481119364930U, 4594016801320007031U, 4607100477024622401U, 13830472513879398209U, 4594016801320007031U, 4607068040143112603U, 4594891488091520602U, 13818263524946296410U, 4607068040143112603U, 4603451617570386922U, 4605475169017376660U, 13828847205872152468U, 4603451617570386922U, 4605843545406134034U, 4602900303344142735U, 13826272340198918543U, 4605843545406134034U, 4597492765973365521U, 4606938683557690074U, 13830310720412465882U, 4597492765973365521U, 4606618018794815019U, 4599948172872067014U, 13823320209726842822U, 4606618018794815019U, 4601173347964633034U, 4606364276725003740U, 13829736313579779548U, 4601173347964633034U, 4604774382555066977U, 4604305528345395596U, 13827677565200171404U, 4604774382555066977U, 4585465300892538317U, 4607176315382986589U, 13830548352237762397U, 4585465300892538317U, 4607176315382986589U, 4585465300892538317U, 13808837337747314125U, 4607176315382986589U, 4604305528345395596U, 4604774382555066977U, 13828146419409842785U, 4604305528345395596U, 4606364276725003740U, 4601173347964633034U, 13824545384819408842U, 4606364276725003740U, 4599948172872067014U, 4606618018794815019U, 13829990055649590827U, 4599948172872067014U, 4606938683557690074U, 4597492765973365521U, 13820864802828141329U, 4606938683557690074U, 4602900303344142735U, 4605843545406134034U, 13829215582260909842U, 4602900303344142735U, 4605475169017376660U, 4603451617570386922U, 13826823654425162730U, 4605475169017376660U, 4594891488091520602U, 4607068040143112603U, 13830440076997888411U, 4594891488091520602U, 4607100477024622401U, 4594016801320007031U, 13817388838174782839U, 4607100477024622401U, 4603629178146150899U, 4605343481119364930U, 13828715517974140738U, 4603629178146150899U, 4605957195211051218U, 4602710690099904183U, 13826082726954679991U, 4605957195211051218U, 4598262871476403630U, 4606884969294623682U, 13830257006149399490U, 4598262871476403630U, 4606692493141721470U, 4599531889160152938U, 13822903926014928746U, 4606692493141721470U, 4601573027631668967U, 4606269759522929756U, 13829641796377705564U, 4601573027631668967U, 4604922840319727473U, 4604141730443515286U, 13827513767298291094U, 4604922840319727473U, 4588998070480937184U, 4607165468267934125U, 13830537505122709933U, 4588998070480937184U, 4607149205763218185U, 4590846768565625881U, 13814218805420401689U, 4607149205763218185U, 4603974338538572089U, 4605067233569943231U, 13828439270424719039U, 4603974338538572089U, 4606170366472647579U, 4601967947786150793U, 13825339984640926601U, 4606170366472647579U, 4599112075441176914U, 4606761837001494797U, 13830133873856270605U, 4599112075441176914U, 4606826008603986804U, 4598688984595225406U, 13822061021450001214U, 4606826008603986804U, 4602357870542944470U, 4606066157444814153U, 13829438194299589961U, 4602357870542944470U, 4605207475328619533U, 4603803453461190356U, 13827175490315966164U, 4605207475328619533U, 4592606767730311893U, 4607127537664763515U, 13830499574519539323U, 4592606767730311893U, 4607030246558998647U, 4595762727260045105U, 13819134764114820913U, 4607030246558998647U, 4603270878689749849U, 4605602459698789090U, 13828974496553564898U, 4603270878689749849U, 4605725276488455441U, 4603087070374583113U, 13826459107229358921U, 4605725276488455441U, 4596629994023683153U, 4606987119037722413U, 13830359155892498221U, 4596629994023683153U, 4606538458821337243U, 4600360675823176935U, 13823732712677952743U, 4606538458821337243U, 4600769149537129431U, 4606453861145241227U, 13829825898000017035U, 4600769149537129431U, 4604621949701367983U, 4604465633578481725U, 13827837670433257533U, 4604621949701367983U, 4578227681973159812U, 4607181740574479067U, 13830553777429254875U, 4578227681973159812U, 4607182249242036882U, 4573724215515480177U, 13797096252370255985U, 4607182249242036882U, 4604505071555817232U, 4604583231088591477U, 13827955267943367285U, 4604505071555817232U, 4606475480113671417U, 4600667422348321968U, 13824039459203097776U, 4606475480113671417U, 4600463181646572228U, 4606517779747998088U, 13829889816602773896U, 4600463181646572228U, 4606998399608725124U, 4596413578358834022U, 13819785615213609830U, 4606998399608725124U, 4603133304188877240U, 4605694995810664660U, 13829067032665440468U, 4603133304188877240U, 4605633586259814045U, 4603225210076562971U, 13826597246931338779U, 4605633586259814045U, 4595979936813835462U, 4607019963775302583U, 13830392000630078391U, 4595979936813835462U, 4607133460805585796U, 4592167175087283203U, 13815539211942059011U, 4607133460805585796U, 4603846496621587377U, 4605172808754305228U, 13828544845609081036U, 4603846496621587377U, 4606092657816072624U, 4602260871257280788U, 13825632908112056596U, 4606092657816072624U, 4598795050632330097U, 4606810452769876110U, 13830182489624651918U, 4598795050632330097U, 4606778366364612594U, 4599006600037663623U, 13822378636892439431U, 4606778366364612594U, 4602065906208722008U, 4606144763310860551U, 13829516800165636359U, 4602065906208722008U, 4605102686554936490U, 4603931940768740167U, 13827303977623515975U, 4605102686554936490U, 4591287158938884897U, 4607144295058764886U, 13830516331913540694U, 4591287158938884897U, 4607168688050493276U, 4588115294056142819U, 13811487330910918627U, 4607168688050493276U, 4604183020748362039U, 4604886103475043762U, 13828258140329819570U, 4604183020748362039U, 4606293848208650998U, 4601473544562720001U, 13824845581417495809U, 4606293848208650998U, 4599636300858866724U, 4606674353838411301U, 13830046390693187109U, 4599636300858866724U, 4606898891031025132U, 4598136582470364665U, 13821508619325140473U, 4606898891031025132U, 4602758354025980442U, 4605929219593405673U, 13829301256448181481U, 4602758354025980442U, 4605376811039722786U, 4603585091850767959U, 13826957128705543767U, 4605376811039722786U, 4594235767444503503U, 4607092871118901179U, 13830464907973676987U, 4594235767444503503U, 4607076652372832968U, 4594673119063280916U, 13818045155918056724U, 4607076652372832968U, 4603496309891590679U, 4605442656228245717U, 13828814693083021525U, 4603496309891590679U, 4605872393621214213U, 4602853162432841185U, 13826225199287616993U, 4605872393621214213U, 4597707695679609371U, 4606925748668145757U, 13830297785522921565U, 4597707695679609371U, 4606637115963965612U, 4599844446633109139U, 13823216483487884947U, 4606637115963965612U, 4601273700967202825U, 4606341107699334546U, 13829713144554110354U, 4601273700967202825U, 4604811873195349477U, 4604264921241055824U, 13827636958095831632U, 4604811873195349477U, 4586348876009622851U, 4607174111710118367U, 13830546148564894175U, 4586348876009622851U, 4607178180169683960U, 4584498631466405633U, 13807870668321181441U, 4607178180169683960U, 4604345904647073908U, 4604736643460027021U, 13828108680314802829U, 4604345904647073908U, 4606387137437298591U, 4601072712526242277U, 13824444749381018085U, 4606387137437298591U, 4600051662802353687U, 4606598603759044570U, 13829970640613820378U, 4600051662802353687U, 4606951288507767453U, 4597277522845151878U, 13820649559699927686U, 4606951288507767453U, 4602947266358709886U, 4605814408482919348U, 13829186445337695156U, 4602947266358709886U, 4605507406967535927U, 4603406726595779752U, 13826778763450555560U, 4605507406967535927U, 4595109641634432498U, 4607059093103722971U, 13830431129958498779U, 4595109641634432498U, 4607107746899444102U, 4593797652641645341U, 13817169689496421149U, 4607107746899444102U, 4603673059103075106U, 4605309881318010327U, 13828681918172786135U, 4603673059103075106U, 4605984877841711338U, 4602646891659203088U, 13826018928513978896U, 4605984877841711338U, 4598369669086960528U, 4606870719641066940U, 13830242756495842748U, 4598369669086960528U, 4606710311774494716U, 4599427256825614420U, 13822799293680390228U, 4606710311774494716U, 4601672213217083403U, 4606245366082353408U, 13829617402937129216U, 4601672213217083403U, 4604959323120302796U, 4604100215502905499U, 13827472252357681307U, 4604959323120302796U, 4589524267239410099U, 4607161910007591876U, 13830533946862367684U, 4589524267239410099U, 4607153778602162496U, 4590406145430462614U, 13813778182285238422U, 4607153778602162496U, 4604016517974851588U, 4605031521104517324U, 13828403557959293132U, 4604016517974851588U, 4606195668621671667U, 4601869677011524443U, 13825241713866300251U, 4606195668621671667U, 4599217346014614711U, 4606744984357082948U, 13830117021211858756U, 4599217346014614711U, 4606841238740778884U, 4598582729657176439U, 13821954766511952247U, 4606841238740778884U, 4602454542796181607U, 4606039359984203741U, 13829411396838979549U, 4602454542796181607U, 4605241877142478242U, 4603760198400967492U, 13827132235255743300U, 4605241877142478242U, 4593046061348462537U, 4607121277474223905U, 13830493314328999713U, 4593046061348462537U, 4607040195955932526U, 4595545269419264690U, 13818917306274040498U, 4607040195955932526U, 4603316355454250015U, 4605571053506370248U, 13828943090361146056U, 4603316355454250015U, 4605755272910869620U, 4603040651631881451U, 13826412688486657259U, 4605755272910869620U, 4596846128749438754U, 4606975506703684317U, 13830347543558460125U, 4596846128749438754U, 4606558823023444576U, 4600257918160607478U, 13823629955015383286U, 4606558823023444576U, 4600870609507958271U, 4606431930490633905U, 13829803967345409713U, 4600870609507958271U, 4604660425598397818U, 4604425958770613225U, 13827797995625389033U, 4604660425598397818U, 4580962600092897021U, 4607180892816495009U, 13830552929671270817U, 4580962600092897021U, 4607180892816495009U, 4580962600092897021U, 13804334636947672829U, 4607180892816495009U, 4604425958770613225U, 4604660425598397818U, 13828032462453173626U, 4604425958770613225U, 4606431930490633905U, 4600870609507958271U, 13824242646362734079U, 4606431930490633905U, 4600257918160607478U, 4606558823023444576U, 13829930859878220384U, 4600257918160607478U, 4606975506703684317U, 4596846128749438754U, 13820218165604214562U, 4606975506703684317U, 4603040651631881451U, 4605755272910869620U, 13829127309765645428U, 4603040651631881451U, 4605571053506370248U, 4603316355454250015U, 13826688392309025823U, 4605571053506370248U, 4595545269419264690U, 4607040195955932526U, 13830412232810708334U, 4595545269419264690U, 4607121277474223905U, 4593046061348462537U, 13816418098203238345U, 4607121277474223905U, 4603760198400967492U, 4605241877142478242U, 13828613913997254050U, 4603760198400967492U, 4606039359984203741U, 4602454542796181607U, 13825826579650957415U, 4606039359984203741U, 4598582729657176439U, 4606841238740778884U, 13830213275595554692U, 4598582729657176439U, 4606744984357082948U, 4599217346014614711U, 13822589382869390519U, 4606744984357082948U, 4601869677011524443U, 4606195668621671667U, 13829567705476447475U, 4601869677011524443U, 4605031521104517324U, 4604016517974851588U, 13827388554829627396U, 4605031521104517324U, 4590406145430462614U, 4607153778602162496U, 13830525815456938304U, 4590406145430462614U, 4607161910007591876U, 4589524267239410099U, 13812896304094185907U, 4607161910007591876U, 4604100215502905499U, 4604959323120302796U, 13828331359975078604U, 4604100215502905499U, 4606245366082353408U, 4601672213217083403U, 13825044250071859211U, 4606245366082353408U, 4599427256825614420U, 4606710311774494716U, 13830082348629270524U, 4599427256825614420U, 4606870719641066940U, 4598369669086960528U, 13821741705941736336U, 4606870719641066940U, 4602646891659203088U, 4605984877841711338U, 13829356914696487146U, 4602646891659203088U, 4605309881318010327U, 4603673059103075106U, 13827045095957850914U, 4605309881318010327U, 4593797652641645341U, 4607107746899444102U, 13830479783754219910U, 4593797652641645341U, 4607059093103722971U, 4595109641634432498U, 13818481678489208306U, 4607059093103722971U, 4603406726595779752U, 4605507406967535927U, 13828879443822311735U, 4603406726595779752U, 4605814408482919348U, 4602947266358709886U, 13826319303213485694U, 4605814408482919348U, 4597277522845151878U, 4606951288507767453U, 13830323325362543261U, 4597277522845151878U, 4606598603759044570U, 4600051662802353687U, 13823423699657129495U, 4606598603759044570U, 4601072712526242277U, 4606387137437298591U, 13829759174292074399U, 4601072712526242277U, 4604736643460027021U, 4604345904647073908U, 13827717941501849716U, 4604736643460027021U, 4584498631466405633U, 4607178180169683960U, 13830550217024459768U, 4584498631466405633U, 4607174111710118367U, 4586348876009622851U, 13809720912864398659U, 4607174111710118367U, 4604264921241055824U, 4604811873195349477U, 13828183910050125285U, 4604264921241055824U, 4606341107699334546U, 4601273700967202825U, 13824645737821978633U, 4606341107699334546U, 4599844446633109139U, 4606637115963965612U, 13830009152818741420U, 4599844446633109139U, 4606925748668145757U, 4597707695679609371U, 13821079732534385179U, 4606925748668145757U, 4602853162432841185U, 4605872393621214213U, 13829244430475990021U, 4602853162432841185U, 4605442656228245717U, 4603496309891590679U, 13826868346746366487U, 4605442656228245717U, 4594673119063280916U, 4607076652372832968U, 13830448689227608776U, 4594673119063280916U, 4607092871118901179U, 4594235767444503503U, 13817607804299279311U, 4607092871118901179U, 4603585091850767959U, 4605376811039722786U, 13828748847894498594U, 4603585091850767959U, 4605929219593405673U, 4602758354025980442U, 13826130390880756250U, 4605929219593405673U, 4598136582470364665U, 4606898891031025132U, 13830270927885800940U, 4598136582470364665U, 4606674353838411301U, 4599636300858866724U, 13823008337713642532U, 4606674353838411301U, 4601473544562720001U, 4606293848208650998U, 13829665885063426806U, 4601473544562720001U, 4604886103475043762U, 4604183020748362039U, 13827555057603137847U, 4604886103475043762U, 4588115294056142819U, 4607168688050493276U, 13830540724905269084U, 4588115294056142819U, 4607144295058764886U, 4591287158938884897U, 13814659195793660705U, 4607144295058764886U, 4603931940768740167U, 4605102686554936490U, 13828474723409712298U, 4603931940768740167U, 4606144763310860551U, 4602065906208722008U, 13825437943063497816U, 4606144763310860551U, 4599006600037663623U, 4606778366364612594U, 13830150403219388402U, 4599006600037663623U, 4606810452769876110U, 4598795050632330097U, 13822167087487105905U, 4606810452769876110U, 4602260871257280788U, 4606092657816072624U, 13829464694670848432U, 4602260871257280788U, 4605172808754305228U, 4603846496621587377U, 13827218533476363185U, 4605172808754305228U, 4592167175087283203U, 4607133460805585796U, 13830505497660361604U, 4592167175087283203U, 4607019963775302583U, 4595979936813835462U, 13819351973668611270U, 4607019963775302583U, 4603225210076562971U, 4605633586259814045U, 13829005623114589853U, 4603225210076562971U, 4605694995810664660U, 4603133304188877240U, 13826505341043653048U, 4605694995810664660U, 4596413578358834022U, 4606998399608725124U, 13830370436463500932U, 4596413578358834022U, 4606517779747998088U, 4600463181646572228U, 13823835218501348036U, 4606517779747998088U, 4600667422348321968U, 4606475480113671417U, 13829847516968447225U, 4600667422348321968U, 4604583231088591477U, 4604505071555817232U, 13827877108410593040U, 4604583231088591477U, 4573724215515480177U, 4607182249242036882U, 13830554286096812690U, 4573724215515480177U, 4607182376410422530U, 4569220649180767418U, 13792592686035543226U, 4607182376410422530U, 4604524701268679793U, 4604563781218984604U, 13827935818073760412U, 4604524701268679793U, 4606486172460753999U, 4600616459743653188U, 13823988496598428996U, 4606486172460753999U, 4600514338912178239U, 4606507322377452870U, 13829879359232228678U, 4600514338912178239U, 4607003915349878877U, 4596305267720071930U, 13819677304574847738U, 4607003915349878877U, 4603156351203636159U, 4605679749231851918U, 13829051786086627726U, 4603156351203636159U, 4605649044311923410U, 4603202304363743346U, 13826574341218519154U, 4605649044311923410U, 4596088445927168004U, 4607014697483910382U, 13830386734338686190U, 4596088445927168004U, 4607136295912168606U, 4591947271803021404U, 13815319308657797212U, 4607136295912168606U, 4603867938232615808U, 4605155376589456981U, 13828527413444232789U, 4603867938232615808U, 4606105796280968177U, 4602212250118051877U, 13825584286972827685U, 4606105796280968177U, 4598848011564831930U, 4606802552898869248U, 13830174589753645056U, 4598848011564831930U, 4606786509620734768U, 4598953786765296928U, 13822325823620072736U, 4606786509620734768U, 4602114767134999006U, 4606131849150971908U, 13829503886005747716U, 4602114767134999006U, 4605120315324767624U, 4603910660507251362U, 13827282697362027170U, 4605120315324767624U, 4591507261658050721U, 4607141713064252300U, 13830513749919028108U, 4591507261658050721U, 4607170170974224083U, 4587673791460508439U, 13811045828315284247U, 4607170170974224083U, 4604203581176243359U, 4604867640218014515U, 13828239677072790323U, 4604203581176243359U, 4606305777984577632U, 4601423692641949331U, 13824795729496725139U, 4606305777984577632U, 4599688422741010356U, 4606665164148251002U, 13830037201003026810U, 4599688422741010356U, 4606905728766014348U, 4598029484874872834U, 13821401521729648642U, 4606905728766014348U, 4602782121393764535U, 4605915122243179241U, 13829287159097955049U, 4602782121393764535U, 4605393374401988274U, 4603562972219549215U, 13826935009074325023U, 4605393374401988274U, 4594345179472540681U, 4607088942243446236U, 13830460979098222044U, 4594345179472540681U, 4607080832832247697U, 4594563856311064231U, 13817935893165840039U, 4607080832832247697U, 4603518581031047189U, 4605426297151190466U, 13828798334005966274U, 4603518581031047189U, 4605886709123365959U, 4602829525820289164U, 13826201562675064972U, 4605886709123365959U, 4597815040470278984U, 4606919157647773535U, 13830291194502549343U, 4597815040470278984U, 4606646545123403481U, 4599792496117920694U, 13823164532972696502U, 4606646545123403481U, 4601323770373937522U, 4606329407841126011U, 13829701444695901819U, 4601323770373937522U, 4604830524903495634U, 4604244531615310815U, 13827616568470086623U, 4604830524903495634U, 4586790578280679046U, 4607172882816799076U, 13830544919671574884U, 4586790578280679046U, 4607178985458280057U, 4583614727651146525U, 13806986764505922333U, 4607178985458280057U, 4604366005771528720U, 4604717681185626434U, 13828089718040402242U, 4604366005771528720U, 4606398451906509788U, 4601022290077223616U, 13824394326931999424U, 4606398451906509788U, 4600103317933788342U, 4606588777269136769U, 13829960814123912577U, 4600103317933788342U, 4606957467106717424U, 4597169786279785693U, 13820541823134561501U, 4606957467106717424U, 4602970680601913687U, 4605799732098147061U, 13829171768952922869U, 4602970680601913687U, 4605523422498301790U, 4603384207141321914U, 13826756243996097722U, 4605523422498301790U, 4595218635031890910U, 4607054494135176056U, 13830426530989951864U, 4595218635031890910U, 4607111255739239816U, 4593688012422887515U, 13817060049277663323U, 4607111255739239816U, 4603694922063032361U, 4605292980606880364U, 13828665017461656172U, 4603694922063032361U, 4605998608960791335U, 4602598930031891166U, 13825970966886666974U, 4605998608960791335U, 4598423001813699022U, 4606863472012527185U, 13830235508867302993U, 4598423001813699022U, 4606719100629313491U, 4599374859150636784U, 13822746896005412592U, 4606719100629313491U, 4601721693286060937U, 4606233055365547081U, 13829605092220322889U, 4601721693286060937U, 4604977468824438271U, 4604079374282302598U, 13827451411137078406U, 4604977468824438271U, 4589744810590291021U, 4607160003989618959U, 13830532040844394767U, 4589744810590291021U, 4607155938267770208U, 4590185751760970393U, 13813557788615746201U, 4607155938267770208U, 4604037525321326463U, 4605013567986435066U, 13828385604841210874U, 4604037525321326463U, 4606208206518262803U, 4601820425647934753U, 13825192462502710561U, 4606208206518262803U, 4599269903251194481U, 4606736437002195879U, 13830108473856971687U, 4599269903251194481U, 4606848731493011465U, 4598529532600161144U, 13821901569454936952U, 4606848731493011465U, 4602502755147763107U, 4606025850160239809U, 13829397887015015617U, 4602502755147763107U, 4605258978359093269U, 4603738491917026584U, 13827110528771802392U, 4605258978359093269U, 4593265590854265407U, 4607118021058468598U, 13830490057913244406U, 4593265590854265407U, 4607045045516813836U, 4595436449949385485U, 13818808486804161293U, 4607045045516813836U, 4603339021357904144U, 4605555245917486022U, 13828927282772261830U, 4603339021357904144U, 4605770164172969910U, 4603017373458244943U, 13826389410313020751U, 4605770164172969910U, 4596954088216812973U, 4606969576261663845U, 13830341613116439653U, 4596954088216812973U, 4606568886807728474U, 4600206446098256018U, 13823578482953031826U, 4606568886807728474U, 4600921238092511730U, 4606420848538580260U, 13829792885393356068U, 4600921238092511730U, 4604679572075463103U, 4604406033021674239U, 13827778069876450047U, 4604679572075463103U, 4581846703643734566U, 4607180341788068727U, 13830552378642844535U, 4581846703643734566U, 4607181359080094673U, 4579996072175835083U, 13803368109030610891U, 4607181359080094673U, 4604445825685214043U, 4604641218080103285U, 13828013254934879093U, 4604445825685214043U, 4606442934727379583U, 4600819913163773071U, 13824191950018548879U, 4606442934727379583U, 4600309328230211502U, 4606548680329491866U, 13829920717184267674U, 4600309328230211502U, 4606981354314050484U, 4596738097012783531U, 13820110133867559339U, 4606981354314050484U, 4603063884010218172U, 4605740310302420207U, 13829112347157196015U, 4603063884010218172U, 4605586791482848547U, 4603293641160266722U, 13826665678015042530U, 4605586791482848547U, 4595654028864046335U, 4607035262954517034U, 13830407299809292842U, 4595654028864046335U, 4607124449686274900U, 4592826452951465409U, 13816198489806241217U, 4607124449686274900U, 4603781852316960384U, 4605224709411790590U, 13828596746266566398U, 4603781852316960384U, 4606052795787882823U, 4602406247776385022U, 13825778284631160830U, 4606052795787882823U, 4598635880488956483U, 4606833664420673202U, 13830205701275449010U, 4598635880488956483U, 4606753451050079834U, 4599164736579548843U, 13822536773434324651U, 4606753451050079834U, 4601918851211878557U, 4606183055233559255U, 13829555092088335063U, 4601918851211878557U, 4605049409688478101U, 4603995455647851249U, 13827367492502627057U, 4605049409688478101U, 4590626485056654602U, 4607151534426937478U, 13830523571281713286U, 4590626485056654602U, 4607163731439411601U, 4589303678145802340U, 13812675715000578148U, 4607163731439411601U, 4604121000955189926U, 4604941113561600762U, 13828313150416376570U, 4604121000955189926U, 4606257600839867033U, 4601622657843474729U, 13824994694698250537U, 4606257600839867033U, 4599479600326345459U, 4606701442584137310U, 13830073479438913118U, 4599479600326345459U, 4606877885424248132U, 4598316292140394014U, 13821688328995169822U, 4606877885424248132U, 4602686793990243041U, 4605971073215153165U, 13829343110069928973U, 4602686793990243041U, 4605326714874986465U, 4603651144395358093U, 13827023181250133901U, 4605326714874986465U, 4593907249284540294U, 4607104153983298999U, 13830476190838074807U, 4593907249284540294U, 4607063608453868552U, 4595000592312171144U, 13818372629166946952U, 4607063608453868552U, 4603429196809300824U, 4605491322423429598U, 13828863359278205406U, 4603429196809300824U, 4605829012964735987U, 4602923807199184054U, 13826295844053959862U, 4605829012964735987U, 4597385183080791534U, 4606945027305114062U, 13830317064159889870U, 4597385183080791534U, 4606608350964852124U, 4599999947619525579U, 13823371984474301387U, 4606608350964852124U, 4601123065313358619U, 4606375745674388705U, 13829747782529164513U, 4601123065313358619U, 4604755543975806820U, 4604325745441780828U, 13827697782296556636U, 4604755543975806820U, 4585023436363055487U, 4607177290141793710U, 13830549326996569518U, 4585023436363055487U, 4607175255902437396U, 4585907115494236537U, 13809279152349012345U, 4607175255902437396U, 4604285253548209224U, 4604793159020491611U, 13828165195875267419U, 4604285253548209224U, 4606352730697093817U, 4601223560006786057U, 13824595596861561865U, 4606352730697093817U, 4599896339047301634U, 4606627607157935956U, 13829999644012711764U, 4599896339047301634U, 4606932257325205256U, 4597600270510262682U, 13820972307365038490U, 4606932257325205256U, 4602876755014813164U, 4605858005670328613U, 13829230042525104421U, 4602876755014813164U, 4605458946901419122U, 4603473988668005304U, 13826846025522781112U, 4605458946901419122U, 4594782329999411347U, 4607072388129742377U, 13830444424984518185U, 4594782329999411347U, 4607096716058023245U, 4594126307716900071U, 13817498344571675879U, 4607096716058023245U, 4603607160562208225U, 4605360179893335444U, 13828732216748111252U, 4603607160562208225U, 4605943243960030558U, 4602734543519989142U, 13826106580374764950U, 4605943243960030558U, 4598209407597805010U, 4606891971185517504U, 13830264008040293312U, 4598209407597805010U, 4606683463531482757U, 4599584122834874440U, 13822956159689650248U, 4606683463531482757U, 4601523323048804569U, 4606281842017099424U, 13829653878871875232U, 4601523323048804569U, 4604904503566677638U, 4604162403772767740U, 13827534440627543548U, 4604904503566677638U, 4588556721781247689U, 4607167120476811757U, 13830539157331587565U, 4588556721781247689U, 4607146792632922887U, 4591066993883984169U, 13814439030738759977U, 4607146792632922887U, 4603953166845776383U, 4605084992581147553U, 13828457029435923361U, 4603953166845776383U, 4606157602458368090U, 4602016966272225497U, 13825389003127001305U, 4606157602458368090U, 4599059363095165615U, 4606770142132396069U, 13830142178987171877U, 4599059363095165615U, 4606818271362779153U, 4598742041476147134U, 13822114078330922942U, 4606818271362779153U, 4602309411551204896U, 4606079444829232727U, 13829451481684008535U, 4602309411551204896U, 4605190175055178825U, 4603825001630339212U, 13827197038485115020U, 4605190175055178825U, 4592387007752762956U, 4607130541380624519U, 13830502578235400327U, 4592387007752762956U, 4607025146816593591U, 4595871363584150300U, 13819243400438926108U, 4607025146816593591U, 4603248068256948438U, 4605618058006716661U, 13828990094861492469U, 4603248068256948438U, 4605710171610479304U, 4603110210506737381U, 13826482247361513189U, 4605710171610479304U, 4596521820799644122U, 4606992800820440327U, 13830364837675216135U, 4596521820799644122U, 4606528158595189433U, 4600411960456200676U, 13823783997310976484U, 4606528158595189433U, 4600718319105833937U, 4606464709641375231U, 13829836746496151039U, 4600718319105833937U, 4604602620643553229U, 4604485382263976838U, 13827857419118752646U, 4604602620643553229U, 4576459225186735875U, 4607182037296057423U, 13830554074150833231U, 4576459225186735875U, 4607182037296057423U, 4576459225186735875U, 13799831262041511683U, 4607182037296057423U, 4604485382263976838U, 4604602620643553229U, 13827974657498329037U, 4604485382263976838U, 4606464709641375231U, 4600718319105833937U, 13824090355960609745U, 4606464709641375231U, 4600411960456200676U, 4606528158595189433U, 13829900195449965241U, 4600411960456200676U, 4606992800820440327U, 4596521820799644122U, 13819893857654419930U, 4606992800820440327U, 4603110210506737381U, 4605710171610479304U, 13829082208465255112U, 4603110210506737381U, 4605618058006716661U, 4603248068256948438U, 13826620105111724246U, 4605618058006716661U, 4595871363584150300U, 4607025146816593591U, 13830397183671369399U, 4595871363584150300U, 4607130541380624519U, 4592387007752762956U, 13815759044607538764U, 4607130541380624519U, 4603825001630339212U, 4605190175055178825U, 13828562211909954633U, 4603825001630339212U, 4606079444829232727U, 4602309411551204896U, 13825681448405980704U, 4606079444829232727U, 4598742041476147134U, 4606818271362779153U, 13830190308217554961U, 4598742041476147134U, 4606770142132396069U, 4599059363095165615U, 13822431399949941423U, 4606770142132396069U, 4602016966272225497U, 4606157602458368090U, 13829529639313143898U, 4602016966272225497U, 4605084992581147553U, 4603953166845776383U, 13827325203700552191U, 4605084992581147553U, 4591066993883984169U, 4607146792632922887U, 13830518829487698695U, 4591066993883984169U, 4607167120476811757U, 4588556721781247689U, 13811928758636023497U, 4607167120476811757U, 4604162403772767740U, 4604904503566677638U, 13828276540421453446U, 4604162403772767740U, 4606281842017099424U, 4601523323048804569U, 13824895359903580377U, 4606281842017099424U, 4599584122834874440U, 4606683463531482757U, 13830055500386258565U, 4599584122834874440U, 4606891971185517504U, 4598209407597805010U, 13821581444452580818U, 4606891971185517504U, 4602734543519989142U, 4605943243960030558U, 13829315280814806366U, 4602734543519989142U, 4605360179893335444U, 4603607160562208225U, 13826979197416984033U, 4605360179893335444U, 4594126307716900071U, 4607096716058023245U, 13830468752912799053U, 4594126307716900071U, 4607072388129742377U, 4594782329999411347U, 13818154366854187155U, 4607072388129742377U, 4603473988668005304U, 4605458946901419122U, 13828830983756194930U, 4603473988668005304U, 4605858005670328613U, 4602876755014813164U, 13826248791869588972U, 4605858005670328613U, 4597600270510262682U, 4606932257325205256U, 13830304294179981064U, 4597600270510262682U, 4606627607157935956U, 4599896339047301634U, 13823268375902077442U, 4606627607157935956U, 4601223560006786057U, 4606352730697093817U, 13829724767551869625U, 4601223560006786057U, 4604793159020491611U, 4604285253548209224U, 13827657290402985032U, 4604793159020491611U, 4585907115494236537U, 4607175255902437396U, 13830547292757213204U, 4585907115494236537U, 4607177290141793710U, 4585023436363055487U, 13808395473217831295U, 4607177290141793710U, 4604325745441780828U, 4604755543975806820U, 13828127580830582628U, 4604325745441780828U, 4606375745674388705U, 4601123065313358619U, 13824495102168134427U, 4606375745674388705U, 4599999947619525579U, 4606608350964852124U, 13829980387819627932U, 4599999947619525579U, 4606945027305114062U, 4597385183080791534U, 13820757219935567342U, 4606945027305114062U, 4602923807199184054U, 4605829012964735987U, 13829201049819511795U, 4602923807199184054U, 4605491322423429598U, 4603429196809300824U, 13826801233664076632U, 4605491322423429598U, 4595000592312171144U, 4607063608453868552U, 13830435645308644360U, 4595000592312171144U, 4607104153983298999U, 4593907249284540294U, 13817279286139316102U, 4607104153983298999U, 4603651144395358093U, 4605326714874986465U, 13828698751729762273U, 4603651144395358093U, 4605971073215153165U, 4602686793990243041U, 13826058830845018849U, 4605971073215153165U, 4598316292140394014U, 4606877885424248132U, 13830249922279023940U, 4598316292140394014U, 4606701442584137310U, 4599479600326345459U, 13822851637181121267U, 4606701442584137310U, 4601622657843474729U, 4606257600839867033U, 13829629637694642841U, 4601622657843474729U, 4604941113561600762U, 4604121000955189926U, 13827493037809965734U, 4604941113561600762U, 4589303678145802340U, 4607163731439411601U, 13830535768294187409U, 4589303678145802340U, 4607151534426937478U, 4590626485056654602U, 13813998521911430410U, 4607151534426937478U, 4603995455647851249U, 4605049409688478101U, 13828421446543253909U, 4603995455647851249U, 4606183055233559255U, 4601918851211878557U, 13825290888066654365U, 4606183055233559255U, 4599164736579548843U, 4606753451050079834U, 13830125487904855642U, 4599164736579548843U, 4606833664420673202U, 4598635880488956483U, 13822007917343732291U, 4606833664420673202U, 4602406247776385022U, 4606052795787882823U, 13829424832642658631U, 4602406247776385022U, 4605224709411790590U, 4603781852316960384U, 13827153889171736192U, 4605224709411790590U, 4592826452951465409U, 4607124449686274900U, 13830496486541050708U, 4592826452951465409U, 4607035262954517034U, 4595654028864046335U, 13819026065718822143U, 4607035262954517034U, 4603293641160266722U, 4605586791482848547U, 13828958828337624355U, 4603293641160266722U, 4605740310302420207U, 4603063884010218172U, 13826435920864993980U, 4605740310302420207U, 4596738097012783531U, 4606981354314050484U, 13830353391168826292U, 4596738097012783531U, 4606548680329491866U, 4600309328230211502U, 13823681365084987310U, 4606548680329491866U, 4600819913163773071U, 4606442934727379583U, 13829814971582155391U, 4600819913163773071U, 4604641218080103285U, 4604445825685214043U, 13827817862539989851U, 4604641218080103285U, 4579996072175835083U, 4607181359080094673U, 13830553395934870481U, 4579996072175835083U, 4607180341788068727U, 4581846703643734566U, 13805218740498510374U, 4607180341788068727U, 4604406033021674239U, 4604679572075463103U, 13828051608930238911U, 4604406033021674239U, 4606420848538580260U, 4600921238092511730U, 13824293274947287538U, 4606420848538580260U, 4600206446098256018U, 4606568886807728474U, 13829940923662504282U, 4600206446098256018U, 4606969576261663845U, 4596954088216812973U, 13820326125071588781U, 4606969576261663845U, 4603017373458244943U, 4605770164172969910U, 13829142201027745718U, 4603017373458244943U, 4605555245917486022U, 4603339021357904144U, 13826711058212679952U, 4605555245917486022U, 4595436449949385485U, 4607045045516813836U, 13830417082371589644U, 4595436449949385485U, 4607118021058468598U, 4593265590854265407U, 13816637627709041215U, 4607118021058468598U, 4603738491917026584U, 4605258978359093269U, 13828631015213869077U, 4603738491917026584U, 4606025850160239809U, 4602502755147763107U, 13825874792002538915U, 4606025850160239809U, 4598529532600161144U, 4606848731493011465U, 13830220768347787273U, 4598529532600161144U, 4606736437002195879U, 4599269903251194481U, 13822641940105970289U, 4606736437002195879U, 4601820425647934753U, 4606208206518262803U, 13829580243373038611U, 4601820425647934753U, 4605013567986435066U, 4604037525321326463U, 13827409562176102271U, 4605013567986435066U, 4590185751760970393U, 4607155938267770208U, 13830527975122546016U, 4590185751760970393U, 4607160003989618959U, 4589744810590291021U, 13813116847445066829U, 4607160003989618959U, 4604079374282302598U, 4604977468824438271U, 13828349505679214079U, 4604079374282302598U, 4606233055365547081U, 4601721693286060937U, 13825093730140836745U, 4606233055365547081U, 4599374859150636784U, 4606719100629313491U, 13830091137484089299U, 4599374859150636784U, 4606863472012527185U, 4598423001813699022U, 13821795038668474830U, 4606863472012527185U, 4602598930031891166U, 4605998608960791335U, 13829370645815567143U, 4602598930031891166U, 4605292980606880364U, 4603694922063032361U, 13827066958917808169U, 4605292980606880364U, 4593688012422887515U, 4607111255739239816U, 13830483292594015624U, 4593688012422887515U, 4607054494135176056U, 4595218635031890910U, 13818590671886666718U, 4607054494135176056U, 4603384207141321914U, 4605523422498301790U, 13828895459353077598U, 4603384207141321914U, 4605799732098147061U, 4602970680601913687U, 13826342717456689495U, 4605799732098147061U, 4597169786279785693U, 4606957467106717424U, 13830329503961493232U, 4597169786279785693U, 4606588777269136769U, 4600103317933788342U, 13823475354788564150U, 4606588777269136769U, 4601022290077223616U, 4606398451906509788U, 13829770488761285596U, 4601022290077223616U, 4604717681185626434U, 4604366005771528720U, 13827738042626304528U, 4604717681185626434U, 4583614727651146525U, 4607178985458280057U, 13830551022313055865U, 4583614727651146525U, 4607172882816799076U, 4586790578280679046U, 13810162615135454854U, 4607172882816799076U, 4604244531615310815U, 4604830524903495634U, 13828202561758271442U, 4604244531615310815U, 4606329407841126011U, 4601323770373937522U, 13824695807228713330U, 4606329407841126011U, 4599792496117920694U, 4606646545123403481U, 13830018581978179289U, 4599792496117920694U, 4606919157647773535U, 4597815040470278984U, 13821187077325054792U, 4606919157647773535U, 4602829525820289164U, 4605886709123365959U, 13829258745978141767U, 4602829525820289164U, 4605426297151190466U, 4603518581031047189U, 13826890617885822997U, 4605426297151190466U, 4594563856311064231U, 4607080832832247697U, 13830452869687023505U, 4594563856311064231U, 4607088942243446236U, 4594345179472540681U, 13817717216327316489U, 4607088942243446236U, 4603562972219549215U, 4605393374401988274U, 13828765411256764082U, 4603562972219549215U, 4605915122243179241U, 4602782121393764535U, 13826154158248540343U, 4605915122243179241U, 4598029484874872834U, 4606905728766014348U, 13830277765620790156U, 4598029484874872834U, 4606665164148251002U, 4599688422741010356U, 13823060459595786164U, 4606665164148251002U, 4601423692641949331U, 4606305777984577632U, 13829677814839353440U, 4601423692641949331U, 4604867640218014515U, 4604203581176243359U, 13827575618031019167U, 4604867640218014515U, 4587673791460508439U, 4607170170974224083U, 13830542207828999891U, 4587673791460508439U, 4607141713064252300U, 4591507261658050721U, 13814879298512826529U, 4607141713064252300U, 4603910660507251362U, 4605120315324767624U, 13828492352179543432U, 4603910660507251362U, 4606131849150971908U, 4602114767134999006U, 13825486803989774814U, 4606131849150971908U, 4598953786765296928U, 4606786509620734768U, 13830158546475510576U, 4598953786765296928U, 4606802552898869248U, 4598848011564831930U, 13822220048419607738U, 4606802552898869248U, 4602212250118051877U, 4606105796280968177U, 13829477833135743985U, 4602212250118051877U, 4605155376589456981U, 4603867938232615808U, 13827239975087391616U, 4605155376589456981U, 4591947271803021404U, 4607136295912168606U, 13830508332766944414U, 4591947271803021404U, 4607014697483910382U, 4596088445927168004U, 13819460482781943812U, 4607014697483910382U, 4603202304363743346U, 4605649044311923410U, 13829021081166699218U, 4603202304363743346U, 4605679749231851918U, 4603156351203636159U, 13826528388058411967U, 4605679749231851918U, 4596305267720071930U, 4607003915349878877U, 13830375952204654685U, 4596305267720071930U, 4606507322377452870U, 4600514338912178239U, 13823886375766954047U, 4606507322377452870U, 4600616459743653188U, 4606486172460753999U, 13829858209315529807U, 4600616459743653188U, 4604563781218984604U, 4604524701268679793U, 13827896738123455601U, 4604563781218984604U, 4569220649180767418U, 4607182376410422530U, 13830554413265198338U, 4569220649180767418U }; const fpr fpr_p2_tab[] = { 4611686018427387904U, 4607182418800017408U, 4602678819172646912U, 4598175219545276416U, 4593671619917905920U, 4589168020290535424U, 4584664420663164928U, 4580160821035794432U, 4575657221408423936U, 4571153621781053440U, 4566650022153682944U };