/******************************************************************************************** * FrodoKEM: Learning with Errors Key Encapsulation * * Abstract: Key Encapsulation Mechanism (KEM) based on Frodo *********************************************************************************************/ #include <stdint.h> #include <string.h> #include "fips202.h" #include "randombytes.h" #include "api.h" #include "common.h" #include "params.h" int PQCLEAN_FRODOKEM640SHAKE_OPT_crypto_kem_keypair(uint8_t *pk, uint8_t *sk) { // FrodoKEM's key generation // Outputs: public key pk ( BYTES_SEED_A + (PARAMS_LOGQ*PARAMS_N*PARAMS_NBAR)/8 bytes) // secret key sk (CRYPTO_BYTES + BYTES_SEED_A + (PARAMS_LOGQ*PARAMS_N*PARAMS_NBAR)/8 + 2*PARAMS_N*PARAMS_NBAR + BYTES_PKHASH bytes) uint8_t *pk_seedA = &pk[0]; uint8_t *pk_b = &pk[BYTES_SEED_A]; uint8_t *sk_s = &sk[0]; uint8_t *sk_pk = &sk[CRYPTO_BYTES]; uint8_t *sk_S = &sk[CRYPTO_BYTES + CRYPTO_PUBLICKEYBYTES]; uint8_t *sk_pkh = &sk[CRYPTO_BYTES + CRYPTO_PUBLICKEYBYTES + 2 * PARAMS_N * PARAMS_NBAR]; uint16_t B[PARAMS_N * PARAMS_NBAR] = {0}; uint16_t S[2 * PARAMS_N * PARAMS_NBAR] = {0}; // contains secret data uint16_t *E = &S[PARAMS_N * PARAMS_NBAR]; // contains secret data uint8_t randomness[2 * CRYPTO_BYTES + BYTES_SEED_A]; // contains secret data via randomness_s and randomness_seedSE uint8_t *randomness_s = &randomness[0]; // contains secret data uint8_t *randomness_seedSE = &randomness[CRYPTO_BYTES]; // contains secret data uint8_t *randomness_z = &randomness[2 * CRYPTO_BYTES]; uint8_t shake_input_seedSE[1 + CRYPTO_BYTES]; // contains secret data // Generate the secret value s, the seed for S and E, and the seed for the seed for A. Add seed_A to the public key randombytes(randomness, CRYPTO_BYTES + CRYPTO_BYTES + BYTES_SEED_A); shake(pk_seedA, BYTES_SEED_A, randomness_z, BYTES_SEED_A); // Generate S and E, and compute B = A*S + E. Generate A on-the-fly shake_input_seedSE[0] = 0x5F; memcpy(&shake_input_seedSE[1], randomness_seedSE, CRYPTO_BYTES); shake((uint8_t *)S, 2 * PARAMS_N * PARAMS_NBAR * sizeof(uint16_t), shake_input_seedSE, 1 + CRYPTO_BYTES); for (size_t i = 0; i < 2 * PARAMS_N * PARAMS_NBAR; i++) { S[i] = PQCLEAN_FRODOKEM640SHAKE_OPT_LE_TO_UINT16(S[i]); } PQCLEAN_FRODOKEM640SHAKE_OPT_sample_n(S, PARAMS_N * PARAMS_NBAR); PQCLEAN_FRODOKEM640SHAKE_OPT_sample_n(E, PARAMS_N * PARAMS_NBAR); PQCLEAN_FRODOKEM640SHAKE_OPT_mul_add_as_plus_e(B, S, E, pk); // Encode the second part of the public key PQCLEAN_FRODOKEM640SHAKE_OPT_pack(pk_b, CRYPTO_PUBLICKEYBYTES - BYTES_SEED_A, B, PARAMS_N * PARAMS_NBAR, PARAMS_LOGQ); // Add s, pk and S to the secret key memcpy(sk_s, randomness_s, CRYPTO_BYTES); memcpy(sk_pk, pk, CRYPTO_PUBLICKEYBYTES); for (size_t i = 0; i < PARAMS_N * PARAMS_NBAR; i++) { S[i] = PQCLEAN_FRODOKEM640SHAKE_OPT_UINT16_TO_LE(S[i]); } memcpy(sk_S, S, 2 * PARAMS_N * PARAMS_NBAR); // Add H(pk) to the secret key shake(sk_pkh, BYTES_PKHASH, pk, CRYPTO_PUBLICKEYBYTES); // Cleanup: PQCLEAN_FRODOKEM640SHAKE_OPT_clear_bytes((uint8_t *)S, PARAMS_N * PARAMS_NBAR * sizeof(uint16_t)); PQCLEAN_FRODOKEM640SHAKE_OPT_clear_bytes((uint8_t *)E, PARAMS_N * PARAMS_NBAR * sizeof(uint16_t)); PQCLEAN_FRODOKEM640SHAKE_OPT_clear_bytes(randomness, 2 * CRYPTO_BYTES); PQCLEAN_FRODOKEM640SHAKE_OPT_clear_bytes(shake_input_seedSE, 1 + CRYPTO_BYTES); return 0; } int PQCLEAN_FRODOKEM640SHAKE_OPT_crypto_kem_enc(uint8_t *ct, uint8_t *ss, const uint8_t *pk) { // FrodoKEM's key encapsulation const uint8_t *pk_seedA = &pk[0]; const uint8_t *pk_b = &pk[BYTES_SEED_A]; uint8_t *ct_c1 = &ct[0]; uint8_t *ct_c2 = &ct[(PARAMS_LOGQ * PARAMS_N * PARAMS_NBAR) / 8]; uint16_t B[PARAMS_N * PARAMS_NBAR] = {0}; uint16_t V[PARAMS_NBAR * PARAMS_NBAR] = {0}; // contains secret data uint16_t C[PARAMS_NBAR * PARAMS_NBAR] = {0}; uint16_t Bp[PARAMS_N * PARAMS_NBAR] = {0}; uint16_t Sp[(2 * PARAMS_N + PARAMS_NBAR)*PARAMS_NBAR] = {0}; // contains secret data uint16_t *Ep = &Sp[PARAMS_N * PARAMS_NBAR]; // contains secret data uint16_t *Epp = &Sp[2 * PARAMS_N * PARAMS_NBAR]; // contains secret data uint8_t G2in[BYTES_PKHASH + BYTES_MU]; // contains secret data via mu uint8_t *pkh = &G2in[0]; uint8_t *mu = &G2in[BYTES_PKHASH]; // contains secret data uint8_t G2out[2 * CRYPTO_BYTES]; // contains secret data uint8_t *seedSE = &G2out[0]; // contains secret data uint8_t *k = &G2out[CRYPTO_BYTES]; // contains secret data uint8_t Fin[CRYPTO_CIPHERTEXTBYTES + CRYPTO_BYTES]; // contains secret data via Fin_k uint8_t *Fin_ct = &Fin[0]; uint8_t *Fin_k = &Fin[CRYPTO_CIPHERTEXTBYTES]; // contains secret data uint8_t shake_input_seedSE[1 + CRYPTO_BYTES]; // contains secret data // pkh <- G_1(pk), generate random mu, compute (seedSE || k) = G_2(pkh || mu) shake(pkh, BYTES_PKHASH, pk, CRYPTO_PUBLICKEYBYTES); randombytes(mu, BYTES_MU); shake(G2out, CRYPTO_BYTES + CRYPTO_BYTES, G2in, BYTES_PKHASH + BYTES_MU); // Generate Sp and Ep, and compute Bp = Sp*A + Ep. Generate A on-the-fly shake_input_seedSE[0] = 0x96; memcpy(&shake_input_seedSE[1], seedSE, CRYPTO_BYTES); shake((uint8_t *)Sp, (2 * PARAMS_N + PARAMS_NBAR) * PARAMS_NBAR * sizeof(uint16_t), shake_input_seedSE, 1 + CRYPTO_BYTES); for (size_t i = 0; i < (2 * PARAMS_N + PARAMS_NBAR) * PARAMS_NBAR; i++) { Sp[i] = PQCLEAN_FRODOKEM640SHAKE_OPT_LE_TO_UINT16(Sp[i]); } PQCLEAN_FRODOKEM640SHAKE_OPT_sample_n(Sp, PARAMS_N * PARAMS_NBAR); PQCLEAN_FRODOKEM640SHAKE_OPT_sample_n(Ep, PARAMS_N * PARAMS_NBAR); PQCLEAN_FRODOKEM640SHAKE_OPT_mul_add_sa_plus_e(Bp, Sp, Ep, pk_seedA); PQCLEAN_FRODOKEM640SHAKE_OPT_pack(ct_c1, (PARAMS_LOGQ * PARAMS_N * PARAMS_NBAR) / 8, Bp, PARAMS_N * PARAMS_NBAR, PARAMS_LOGQ); // Generate Epp, and compute V = Sp*B + Epp PQCLEAN_FRODOKEM640SHAKE_OPT_sample_n(Epp, PARAMS_NBAR * PARAMS_NBAR); PQCLEAN_FRODOKEM640SHAKE_OPT_unpack(B, PARAMS_N * PARAMS_NBAR, pk_b, CRYPTO_PUBLICKEYBYTES - BYTES_SEED_A, PARAMS_LOGQ); PQCLEAN_FRODOKEM640SHAKE_OPT_mul_add_sb_plus_e(V, B, Sp, Epp); // Encode mu, and compute C = V + enc(mu) (mod q) PQCLEAN_FRODOKEM640SHAKE_OPT_key_encode(C, (uint16_t *)mu); PQCLEAN_FRODOKEM640SHAKE_OPT_add(C, V, C); PQCLEAN_FRODOKEM640SHAKE_OPT_pack(ct_c2, (PARAMS_LOGQ * PARAMS_NBAR * PARAMS_NBAR) / 8, C, PARAMS_NBAR * PARAMS_NBAR, PARAMS_LOGQ); // Compute ss = F(ct||KK) memcpy(Fin_ct, ct, CRYPTO_CIPHERTEXTBYTES); memcpy(Fin_k, k, CRYPTO_BYTES); shake(ss, CRYPTO_BYTES, Fin, CRYPTO_CIPHERTEXTBYTES + CRYPTO_BYTES); // Cleanup: PQCLEAN_FRODOKEM640SHAKE_OPT_clear_bytes((uint8_t *)V, PARAMS_NBAR * PARAMS_NBAR * sizeof(uint16_t)); PQCLEAN_FRODOKEM640SHAKE_OPT_clear_bytes((uint8_t *)Sp, PARAMS_N * PARAMS_NBAR * sizeof(uint16_t)); PQCLEAN_FRODOKEM640SHAKE_OPT_clear_bytes((uint8_t *)Ep, PARAMS_N * PARAMS_NBAR * sizeof(uint16_t)); PQCLEAN_FRODOKEM640SHAKE_OPT_clear_bytes((uint8_t *)Epp, PARAMS_NBAR * PARAMS_NBAR * sizeof(uint16_t)); PQCLEAN_FRODOKEM640SHAKE_OPT_clear_bytes(mu, BYTES_MU); PQCLEAN_FRODOKEM640SHAKE_OPT_clear_bytes(G2out, 2 * CRYPTO_BYTES); PQCLEAN_FRODOKEM640SHAKE_OPT_clear_bytes(Fin_k, CRYPTO_BYTES); PQCLEAN_FRODOKEM640SHAKE_OPT_clear_bytes(shake_input_seedSE, 1 + CRYPTO_BYTES); return 0; } int PQCLEAN_FRODOKEM640SHAKE_OPT_crypto_kem_dec(uint8_t *ss, const uint8_t *ct, const uint8_t *sk) { // FrodoKEM's key decapsulation uint16_t B[PARAMS_N * PARAMS_NBAR] = {0}; uint16_t Bp[PARAMS_N * PARAMS_NBAR] = {0}; uint16_t W[PARAMS_NBAR * PARAMS_NBAR] = {0}; // contains secret data uint16_t C[PARAMS_NBAR * PARAMS_NBAR] = {0}; uint16_t CC[PARAMS_NBAR * PARAMS_NBAR] = {0}; uint16_t BBp[PARAMS_N * PARAMS_NBAR] = {0}; uint16_t Sp[(2 * PARAMS_N + PARAMS_NBAR)*PARAMS_NBAR] = {0}; // contains secret data uint16_t *Ep = &Sp[PARAMS_N * PARAMS_NBAR]; // contains secret data uint16_t *Epp = &Sp[2 * PARAMS_N * PARAMS_NBAR]; // contains secret data const uint8_t *ct_c1 = &ct[0]; const uint8_t *ct_c2 = &ct[(PARAMS_LOGQ * PARAMS_N * PARAMS_NBAR) / 8]; const uint8_t *sk_s = &sk[0]; const uint8_t *sk_pk = &sk[CRYPTO_BYTES]; const uint8_t *sk_S = &sk[CRYPTO_BYTES + CRYPTO_PUBLICKEYBYTES]; uint16_t S[PARAMS_N * PARAMS_NBAR]; // contains secret data const uint8_t *sk_pkh = &sk[CRYPTO_BYTES + CRYPTO_PUBLICKEYBYTES + 2 * PARAMS_N * PARAMS_NBAR]; const uint8_t *pk_seedA = &sk_pk[0]; const uint8_t *pk_b = &sk_pk[BYTES_SEED_A]; uint8_t G2in[BYTES_PKHASH + BYTES_MU]; // contains secret data via muprime uint8_t *pkh = &G2in[0]; uint8_t *muprime = &G2in[BYTES_PKHASH]; // contains secret data uint8_t G2out[2 * CRYPTO_BYTES]; // contains secret data uint8_t *seedSEprime = &G2out[0]; // contains secret data uint8_t *kprime = &G2out[CRYPTO_BYTES]; // contains secret data uint8_t Fin[CRYPTO_CIPHERTEXTBYTES + CRYPTO_BYTES]; // contains secret data via Fin_k uint8_t *Fin_ct = &Fin[0]; uint8_t *Fin_k = &Fin[CRYPTO_CIPHERTEXTBYTES]; // contains secret data uint8_t shake_input_seedSEprime[1 + CRYPTO_BYTES]; // contains secret data for (size_t i = 0; i < PARAMS_N * PARAMS_NBAR; i++) { S[i] = sk_S[2 * i] | (sk_S[2 * i + 1] << 8); } // Compute W = C - Bp*S (mod q), and decode the randomness mu PQCLEAN_FRODOKEM640SHAKE_OPT_unpack(Bp, PARAMS_N * PARAMS_NBAR, ct_c1, (PARAMS_LOGQ * PARAMS_N * PARAMS_NBAR) / 8, PARAMS_LOGQ); PQCLEAN_FRODOKEM640SHAKE_OPT_unpack(C, PARAMS_NBAR * PARAMS_NBAR, ct_c2, (PARAMS_LOGQ * PARAMS_NBAR * PARAMS_NBAR) / 8, PARAMS_LOGQ); PQCLEAN_FRODOKEM640SHAKE_OPT_mul_bs(W, Bp, S); PQCLEAN_FRODOKEM640SHAKE_OPT_sub(W, C, W); PQCLEAN_FRODOKEM640SHAKE_OPT_key_decode((uint16_t *)muprime, W); // Generate (seedSE' || k') = G_2(pkh || mu') memcpy(pkh, sk_pkh, BYTES_PKHASH); shake(G2out, CRYPTO_BYTES + CRYPTO_BYTES, G2in, BYTES_PKHASH + BYTES_MU); // Generate Sp and Ep, and compute BBp = Sp*A + Ep. Generate A on-the-fly shake_input_seedSEprime[0] = 0x96; memcpy(&shake_input_seedSEprime[1], seedSEprime, CRYPTO_BYTES); shake((uint8_t *)Sp, (2 * PARAMS_N + PARAMS_NBAR) * PARAMS_NBAR * sizeof(uint16_t), shake_input_seedSEprime, 1 + CRYPTO_BYTES); for (size_t i = 0; i < (2 * PARAMS_N + PARAMS_NBAR) * PARAMS_NBAR; i++) { Sp[i] = PQCLEAN_FRODOKEM640SHAKE_OPT_LE_TO_UINT16(Sp[i]); } PQCLEAN_FRODOKEM640SHAKE_OPT_sample_n(Sp, PARAMS_N * PARAMS_NBAR); PQCLEAN_FRODOKEM640SHAKE_OPT_sample_n(Ep, PARAMS_N * PARAMS_NBAR); PQCLEAN_FRODOKEM640SHAKE_OPT_mul_add_sa_plus_e(BBp, Sp, Ep, pk_seedA); // Generate Epp, and compute W = Sp*B + Epp PQCLEAN_FRODOKEM640SHAKE_OPT_sample_n(Epp, PARAMS_NBAR * PARAMS_NBAR); PQCLEAN_FRODOKEM640SHAKE_OPT_unpack(B, PARAMS_N * PARAMS_NBAR, pk_b, CRYPTO_PUBLICKEYBYTES - BYTES_SEED_A, PARAMS_LOGQ); PQCLEAN_FRODOKEM640SHAKE_OPT_mul_add_sb_plus_e(W, B, Sp, Epp); // Encode mu, and compute CC = W + enc(mu') (mod q) PQCLEAN_FRODOKEM640SHAKE_OPT_key_encode(CC, (uint16_t *)muprime); PQCLEAN_FRODOKEM640SHAKE_OPT_add(CC, W, CC); // Prepare input to F memcpy(Fin_ct, ct, CRYPTO_CIPHERTEXTBYTES); // Reducing BBp modulo q for (size_t i = 0; i < PARAMS_N * PARAMS_NBAR; i++) { BBp[i] = BBp[i] & ((1 << PARAMS_LOGQ) - 1); } // If (Bp == BBp & C == CC) then ss = F(ct || k'), else ss = F(ct || s) // Needs to avoid branching on secret data as per: // Qian Guo, Thomas Johansson, Alexander Nilsson. A key-recovery timing attack on post-quantum // primitives using the Fujisaki-Okamoto transformation and its application on FrodoKEM. In CRYPTO 2020. int8_t selector = PQCLEAN_FRODOKEM640SHAKE_OPT_ct_verify(Bp, BBp, PARAMS_N * PARAMS_NBAR) | PQCLEAN_FRODOKEM640SHAKE_OPT_ct_verify(C, CC, PARAMS_NBAR * PARAMS_NBAR); // If (selector == 0) then load k' to do ss = F(ct || k'), else if (selector == -1) load s to do ss = F(ct || s) PQCLEAN_FRODOKEM640SHAKE_OPT_ct_select((uint8_t *)Fin_k, (uint8_t *)kprime, (uint8_t *)sk_s, CRYPTO_BYTES, selector); shake(ss, CRYPTO_BYTES, Fin, CRYPTO_CIPHERTEXTBYTES + CRYPTO_BYTES); // Cleanup: PQCLEAN_FRODOKEM640SHAKE_OPT_clear_bytes((uint8_t *)W, PARAMS_NBAR * PARAMS_NBAR * sizeof(uint16_t)); PQCLEAN_FRODOKEM640SHAKE_OPT_clear_bytes((uint8_t *)Sp, PARAMS_N * PARAMS_NBAR * sizeof(uint16_t)); PQCLEAN_FRODOKEM640SHAKE_OPT_clear_bytes((uint8_t *)S, PARAMS_N * PARAMS_NBAR * sizeof(uint16_t)); PQCLEAN_FRODOKEM640SHAKE_OPT_clear_bytes((uint8_t *)Ep, PARAMS_N * PARAMS_NBAR * sizeof(uint16_t)); PQCLEAN_FRODOKEM640SHAKE_OPT_clear_bytes((uint8_t *)Epp, PARAMS_NBAR * PARAMS_NBAR * sizeof(uint16_t)); PQCLEAN_FRODOKEM640SHAKE_OPT_clear_bytes(muprime, BYTES_MU); PQCLEAN_FRODOKEM640SHAKE_OPT_clear_bytes(G2out, 2 * CRYPTO_BYTES); PQCLEAN_FRODOKEM640SHAKE_OPT_clear_bytes(Fin_k, CRYPTO_BYTES); PQCLEAN_FRODOKEM640SHAKE_OPT_clear_bytes(shake_input_seedSEprime, 1 + CRYPTO_BYTES); return 0; }