/************************************************************************************* * qTESLA: an efficient post-quantum signature scheme based on the R-LWE problem * * Abstract: NTT, modular reduction and polynomial functions **************************************************************************************/ #include "api.h" #include "poly.h" #include "sp800-185.h" extern const poly PQCLEAN_QTESLAPIII_CLEAN_zeta; extern const poly PQCLEAN_QTESLAPIII_CLEAN_zetainv; static int64_t reduce(int64_t a) { // Montgomery reduction int64_t u; u = ((uint64_t)a * PARAM_QINV) & 0xFFFFFFFF; u *= PARAM_Q; a += u; return a >> 32; } static int64_t barr_reduce(int64_t a) { // Barrett reduction int64_t u = (int64_t)((uint64_t)a * PARAM_BARR_MULT) >> PARAM_BARR_DIV; return a - u * PARAM_Q; } static void ntt(poly a, const poly w) { // Forward NTT transform size_t NumoProblems = PARAM_N >> 1, jTwiddle = 0; for (; NumoProblems > 0; NumoProblems >>= 1) { size_t jFirst, j = 0; for (jFirst = 0; jFirst < PARAM_N; jFirst = j + NumoProblems) { sdigit_t W = (sdigit_t)w[jTwiddle++]; for (j = jFirst; j < jFirst + NumoProblems; j++) { int64_t temp = barr_reduce(reduce((int64_t)W * a[j + NumoProblems])); a[j + NumoProblems] = barr_reduce(a[j] + (2LL * PARAM_Q - temp)); a[j] = barr_reduce(temp + a[j]); } } } } static void nttinv(poly a, const poly w) { // Inverse NTT transform size_t NumoProblems = 1, jTwiddle = 0; for (; NumoProblems < PARAM_N; NumoProblems *= 2) { size_t jFirst, j = 0; for (jFirst = 0; jFirst < PARAM_N; jFirst = j + NumoProblems) { sdigit_t W = (sdigit_t)w[jTwiddle++]; for (j = jFirst; j < jFirst + NumoProblems; j++) { int64_t temp = a[j]; a[j] = barr_reduce((temp + a[j + NumoProblems])); a[j + NumoProblems] = barr_reduce(reduce((int64_t)W * (temp + (2LL * PARAM_Q - a[j + NumoProblems])))); } } } } static void poly_pointwise(poly result, const poly x, const poly y) { // Pointwise polynomial multiplication result = x.y for (size_t i = 0; i < PARAM_N; i++) { result[i] = reduce(x[i] * y[i]); } } void PQCLEAN_QTESLAPIII_CLEAN_poly_ntt(poly x_ntt, const poly x) { // Call to NTT function. Avoids input destruction for (size_t i = 0; i < PARAM_N; i++) { x_ntt[i] = x[i]; } ntt(x_ntt, PQCLEAN_QTESLAPIII_CLEAN_zeta); } void PQCLEAN_QTESLAPIII_CLEAN_poly_mul(poly result, const poly x, const poly y) { // Polynomial multiplication result = x*y, with in place reduction for (X^N+1) // The inputs x and y are assumed to be in NTT form poly_pointwise(result, x, y); nttinv(result, PQCLEAN_QTESLAPIII_CLEAN_zetainv); } void PQCLEAN_QTESLAPIII_CLEAN_poly_add(poly result, const poly x, const poly y) { // Polynomial addition result = x+y for (size_t i = 0; i < PARAM_N; i++) { result[i] = x[i] + y[i]; } } void PQCLEAN_QTESLAPIII_CLEAN_poly_add_correct(poly result, const poly x, const poly y) { // Polynomial addition result = x+y with correction for (size_t i = 0; i < PARAM_N; i++) { result[i] = x[i] + y[i]; result[i] -= PARAM_Q; result[i] += (result[i] >> (RADIX32 - 1)) & PARAM_Q; // If result[i] >= q then subtract q } } void PQCLEAN_QTESLAPIII_CLEAN_poly_sub(poly result, const poly x, const poly y) { // Polynomial subtraction result = x-y for (size_t i = 0; i < PARAM_N; i++) { result[i] = barr_reduce(x[i] - y[i]); } } /******************************************************************************************** * Name: sparse_mul8 * Description: performs sparse polynomial multiplication * Parameters: inputs: * - const uint8_t *s: part of the secret key * - const uint32_t pos_list[PARAM_H]: list of indices of nonzero elements in c * - const int16_t sign_list[PARAM_H]: list of signs of nonzero elements in c * outputs: * - poly prod: product of 2 polynomials * * Note: pos_list[] and sign_list[] contain public information since c is public *********************************************************************************************/ void PQCLEAN_QTESLAPIII_CLEAN_sparse_mul8(poly prod, const uint8_t *s, const uint32_t pos_list[PARAM_H], const int16_t sign_list[PARAM_H]) { size_t i, j, pos; int8_t *t = (int8_t *)s; for (i = 0; i < PARAM_N; i++) { prod[i] = 0; } for (i = 0; i < PARAM_H; i++) { pos = pos_list[i]; for (j = 0; j < pos; j++) { prod[j] = prod[j] - sign_list[i] * t[j + PARAM_N - pos]; } for (j = pos; j < PARAM_N; j++) { prod[j] = prod[j] + sign_list[i] * t[j - pos]; } } } /******************************************************************************************** * Name: sparse_mul32 * Description: performs sparse polynomial multiplication * Parameters: inputs: * - const int32_t* pk: part of the public key * - const uint32_t pos_list[PARAM_H]: list of indices of nonzero elements in c * - const int16_t sign_list[PARAM_H]: list of signs of nonzero elements in c * outputs: * - poly prod: product of 2 polynomials *********************************************************************************************/ void PQCLEAN_QTESLAPIII_CLEAN_sparse_mul32(poly prod, const int32_t *pk, const uint32_t pos_list[PARAM_H], const int16_t sign_list[PARAM_H]) { size_t i, j, pos; for (i = 0; i < PARAM_N; i++) { prod[i] = 0; } for (i = 0; i < PARAM_H; i++) { pos = pos_list[i]; for (j = 0; j < pos; j++) { prod[j] = prod[j] - sign_list[i] * pk[j + PARAM_N - pos]; } for (j = pos; j < PARAM_N; j++) { prod[j] = prod[j] + sign_list[i] * pk[j - pos]; } } for (i = 0; i < PARAM_N; i++) { prod[i] = barr_reduce(prod[i]); } } void PQCLEAN_QTESLAPIII_CLEAN_poly_uniform(poly_k a, const uint8_t *seed) { // Generation of polynomials "a_i" size_t pos = 0, i = 0, nbytes = (PARAM_Q_LOG + 7) / 8; size_t nblocks = PARAM_GEN_A; uint32_t val1, val2, val3, val4, mask = (uint32_t)(1 << PARAM_Q_LOG) - 1; uint8_t buf[SHAKE128_RATE * PARAM_GEN_A]; uint16_t dmsp = 0; uint8_t dmsp_bytes[2]; dmsp_bytes[0] = (uint8_t)(dmsp & 0xff); dmsp_bytes[1] = (uint8_t)(dmsp >> 8); cshake128(buf, SHAKE128_RATE * PARAM_GEN_A, (uint8_t *)NULL, 0, dmsp_bytes, 2, seed, CRYPTO_RANDOMBYTES); ++dmsp; while (i < PARAM_K * PARAM_N) { if (pos > SHAKE128_RATE * nblocks - 4 * nbytes) { nblocks = 1; dmsp_bytes[0] = (uint8_t)(dmsp & 0xff); dmsp_bytes[1] = (uint8_t)(dmsp >> 8); cshake128(buf, SHAKE128_RATE * nblocks, (uint8_t *)NULL, 0, dmsp_bytes, 2, seed, CRYPTO_RANDOMBYTES); ++dmsp; pos = 0; } val1 = ((uint32_t)(buf[pos]) | (uint32_t)(buf[pos + 1] << 8) | (uint32_t)(buf[pos + 2] << 16) | (uint32_t)(buf[pos + 3] << 24)) & mask; pos += nbytes; val2 = ((uint32_t)(buf[pos]) | (uint32_t)(buf[pos + 1] << 8) | (uint32_t)(buf[pos + 2] << 16) | (uint32_t)(buf[pos + 3] << 24)) & mask; pos += nbytes; val3 = ((uint32_t)(buf[pos]) | (uint32_t)(buf[pos + 1] << 8) | (uint32_t)(buf[pos + 2] << 16) | (uint32_t)(buf[pos + 3] << 24)) & mask; pos += nbytes; val4 = ((uint32_t)(buf[pos]) | (uint32_t)(buf[pos + 1] << 8) | (uint32_t)(buf[pos + 2] << 16) | (uint32_t)(buf[pos + 3] << 24)) & mask; pos += nbytes; if (val1 < PARAM_Q && i < PARAM_K * PARAM_N) { a[i++] = reduce((int64_t)val1 * PARAM_R2_INVN); } if (val2 < PARAM_Q && i < PARAM_K * PARAM_N) { a[i++] = reduce((int64_t)val2 * PARAM_R2_INVN); } if (val3 < PARAM_Q && i < PARAM_K * PARAM_N) { a[i++] = reduce((int64_t)val3 * PARAM_R2_INVN); } if (val4 < PARAM_Q && i < PARAM_K * PARAM_N) { a[i++] = reduce((int64_t)val4 * PARAM_R2_INVN); } } }