/* Based on the public domain implementation in * crypto_hash/sha512/ref/ from http://bench.cr.yp.to/supercop.html * by D. J. Bernstein */ #include <stddef.h> #include <stdint.h> #include <stdlib.h> #include <string.h> #include "sha2.h" static uint32_t load_bigendian_32(const uint8_t *x) { return (uint32_t)(x[3]) | (((uint32_t)(x[2])) << 8) | (((uint32_t)(x[1])) << 16) | (((uint32_t)(x[0])) << 24); } static uint64_t load_bigendian_64(const uint8_t *x) { return (uint64_t)(x[7]) | (((uint64_t)(x[6])) << 8) | (((uint64_t)(x[5])) << 16) | (((uint64_t)(x[4])) << 24) | (((uint64_t)(x[3])) << 32) | (((uint64_t)(x[2])) << 40) | (((uint64_t)(x[1])) << 48) | (((uint64_t)(x[0])) << 56); } static void store_bigendian_32(uint8_t *x, uint64_t u) { x[3] = (uint8_t) u; u >>= 8; x[2] = (uint8_t) u; u >>= 8; x[1] = (uint8_t) u; u >>= 8; x[0] = (uint8_t) u; } static void store_bigendian_64(uint8_t *x, uint64_t u) { x[7] = (uint8_t) u; u >>= 8; x[6] = (uint8_t) u; u >>= 8; x[5] = (uint8_t) u; u >>= 8; x[4] = (uint8_t) u; u >>= 8; x[3] = (uint8_t) u; u >>= 8; x[2] = (uint8_t) u; u >>= 8; x[1] = (uint8_t) u; u >>= 8; x[0] = (uint8_t) u; } #define SHR(x, c) ((x) >> (c)) #define ROTR_32(x, c) (((x) >> (c)) | ((x) << (32 - (c)))) #define ROTR_64(x, c) (((x) >> (c)) | ((x) << (64 - (c)))) #define Ch(x, y, z) (((x) & (y)) ^ (~(x) & (z))) #define Maj(x, y, z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z))) #define Sigma0_32(x) (ROTR_32(x, 2) ^ ROTR_32(x,13) ^ ROTR_32(x,22)) #define Sigma1_32(x) (ROTR_32(x, 6) ^ ROTR_32(x,11) ^ ROTR_32(x,25)) #define sigma0_32(x) (ROTR_32(x, 7) ^ ROTR_32(x,18) ^ SHR(x, 3)) #define sigma1_32(x) (ROTR_32(x,17) ^ ROTR_32(x,19) ^ SHR(x,10)) #define Sigma0_64(x) (ROTR_64(x, 28) ^ ROTR_64(x, 34) ^ ROTR_64(x, 39)) #define Sigma1_64(x) (ROTR_64(x, 14) ^ ROTR_64(x, 18) ^ ROTR_64(x, 41)) #define sigma0_64(x) (ROTR_64(x, 1) ^ ROTR_64(x, 8) ^ SHR(x, 7)) #define sigma1_64(x) (ROTR_64(x, 19) ^ ROTR_64(x, 61) ^ SHR(x, 6)) #define M_32(w0, w14, w9, w1) w0 = sigma1_32(w14) + (w9) + sigma0_32(w1) + (w0); #define M_64(w0, w14, w9, w1) w0 = sigma1_64(w14) + (w9) + sigma0_64(w1) + (w0); #define EXPAND_32 \ M_32(w0, w14, w9, w1) \ M_32(w1, w15, w10, w2) \ M_32(w2, w0, w11, w3) \ M_32(w3, w1, w12, w4) \ M_32(w4, w2, w13, w5) \ M_32(w5, w3, w14, w6) \ M_32(w6, w4, w15, w7) \ M_32(w7, w5, w0, w8) \ M_32(w8, w6, w1, w9) \ M_32(w9, w7, w2, w10) \ M_32(w10, w8, w3, w11) \ M_32(w11, w9, w4, w12) \ M_32(w12, w10, w5, w13) \ M_32(w13, w11, w6, w14) \ M_32(w14, w12, w7, w15) \ M_32(w15, w13, w8, w0) #define EXPAND_64 \ M_64(w0, w14, w9, w1) \ M_64(w1, w15, w10, w2) \ M_64(w2, w0, w11, w3) \ M_64(w3, w1, w12, w4) \ M_64(w4, w2, w13, w5) \ M_64(w5, w3, w14, w6) \ M_64(w6, w4, w15, w7) \ M_64(w7, w5, w0, w8) \ M_64(w8, w6, w1, w9) \ M_64(w9, w7, w2, w10) \ M_64(w10, w8, w3, w11) \ M_64(w11, w9, w4, w12) \ M_64(w12, w10, w5, w13) \ M_64(w13, w11, w6, w14) \ M_64(w14, w12, w7, w15) \ M_64(w15, w13, w8, w0) #define F_32(w, k) \ T1 = h + Sigma1_32(e) + Ch(e, f, g) + (k) + (w); \ T2 = Sigma0_32(a) + Maj(a, b, c); \ h = g; \ g = f; \ f = e; \ e = d + T1; \ d = c; \ c = b; \ b = a; \ a = T1 + T2; #define F_64(w, k) \ T1 = h + Sigma1_64(e) + Ch(e, f, g) + (k) + (w); \ T2 = Sigma0_64(a) + Maj(a, b, c); \ h = g; \ g = f; \ f = e; \ e = d + T1; \ d = c; \ c = b; \ b = a; \ a = T1 + T2; static size_t crypto_hashblocks_sha256(uint8_t *statebytes, const uint8_t *in, size_t inlen) { uint32_t state[8]; uint32_t a; uint32_t b; uint32_t c; uint32_t d; uint32_t e; uint32_t f; uint32_t g; uint32_t h; uint32_t T1; uint32_t T2; a = load_bigendian_32(statebytes + 0); state[0] = a; b = load_bigendian_32(statebytes + 4); state[1] = b; c = load_bigendian_32(statebytes + 8); state[2] = c; d = load_bigendian_32(statebytes + 12); state[3] = d; e = load_bigendian_32(statebytes + 16); state[4] = e; f = load_bigendian_32(statebytes + 20); state[5] = f; g = load_bigendian_32(statebytes + 24); state[6] = g; h = load_bigendian_32(statebytes + 28); state[7] = h; while (inlen >= 64) { uint32_t w0 = load_bigendian_32(in + 0); uint32_t w1 = load_bigendian_32(in + 4); uint32_t w2 = load_bigendian_32(in + 8); uint32_t w3 = load_bigendian_32(in + 12); uint32_t w4 = load_bigendian_32(in + 16); uint32_t w5 = load_bigendian_32(in + 20); uint32_t w6 = load_bigendian_32(in + 24); uint32_t w7 = load_bigendian_32(in + 28); uint32_t w8 = load_bigendian_32(in + 32); uint32_t w9 = load_bigendian_32(in + 36); uint32_t w10 = load_bigendian_32(in + 40); uint32_t w11 = load_bigendian_32(in + 44); uint32_t w12 = load_bigendian_32(in + 48); uint32_t w13 = load_bigendian_32(in + 52); uint32_t w14 = load_bigendian_32(in + 56); uint32_t w15 = load_bigendian_32(in + 60); F_32(w0, 0x428a2f98) F_32(w1, 0x71374491) F_32(w2, 0xb5c0fbcf) F_32(w3, 0xe9b5dba5) F_32(w4, 0x3956c25b) F_32(w5, 0x59f111f1) F_32(w6, 0x923f82a4) F_32(w7, 0xab1c5ed5) F_32(w8, 0xd807aa98) F_32(w9, 0x12835b01) F_32(w10, 0x243185be) F_32(w11, 0x550c7dc3) F_32(w12, 0x72be5d74) F_32(w13, 0x80deb1fe) F_32(w14, 0x9bdc06a7) F_32(w15, 0xc19bf174) EXPAND_32 F_32(w0, 0xe49b69c1) F_32(w1, 0xefbe4786) F_32(w2, 0x0fc19dc6) F_32(w3, 0x240ca1cc) F_32(w4, 0x2de92c6f) F_32(w5, 0x4a7484aa) F_32(w6, 0x5cb0a9dc) F_32(w7, 0x76f988da) F_32(w8, 0x983e5152) F_32(w9, 0xa831c66d) F_32(w10, 0xb00327c8) F_32(w11, 0xbf597fc7) F_32(w12, 0xc6e00bf3) F_32(w13, 0xd5a79147) F_32(w14, 0x06ca6351) F_32(w15, 0x14292967) EXPAND_32 F_32(w0, 0x27b70a85) F_32(w1, 0x2e1b2138) F_32(w2, 0x4d2c6dfc) F_32(w3, 0x53380d13) F_32(w4, 0x650a7354) F_32(w5, 0x766a0abb) F_32(w6, 0x81c2c92e) F_32(w7, 0x92722c85) F_32(w8, 0xa2bfe8a1) F_32(w9, 0xa81a664b) F_32(w10, 0xc24b8b70) F_32(w11, 0xc76c51a3) F_32(w12, 0xd192e819) F_32(w13, 0xd6990624) F_32(w14, 0xf40e3585) F_32(w15, 0x106aa070) EXPAND_32 F_32(w0, 0x19a4c116) F_32(w1, 0x1e376c08) F_32(w2, 0x2748774c) F_32(w3, 0x34b0bcb5) F_32(w4, 0x391c0cb3) F_32(w5, 0x4ed8aa4a) F_32(w6, 0x5b9cca4f) F_32(w7, 0x682e6ff3) F_32(w8, 0x748f82ee) F_32(w9, 0x78a5636f) F_32(w10, 0x84c87814) F_32(w11, 0x8cc70208) F_32(w12, 0x90befffa) F_32(w13, 0xa4506ceb) F_32(w14, 0xbef9a3f7) F_32(w15, 0xc67178f2) a += state[0]; b += state[1]; c += state[2]; d += state[3]; e += state[4]; f += state[5]; g += state[6]; h += state[7]; state[0] = a; state[1] = b; state[2] = c; state[3] = d; state[4] = e; state[5] = f; state[6] = g; state[7] = h; in += 64; inlen -= 64; } store_bigendian_32(statebytes + 0, state[0]); store_bigendian_32(statebytes + 4, state[1]); store_bigendian_32(statebytes + 8, state[2]); store_bigendian_32(statebytes + 12, state[3]); store_bigendian_32(statebytes + 16, state[4]); store_bigendian_32(statebytes + 20, state[5]); store_bigendian_32(statebytes + 24, state[6]); store_bigendian_32(statebytes + 28, state[7]); return inlen; } static size_t crypto_hashblocks_sha512(uint8_t *statebytes, const uint8_t *in, size_t inlen) { uint64_t state[8]; uint64_t a; uint64_t b; uint64_t c; uint64_t d; uint64_t e; uint64_t f; uint64_t g; uint64_t h; uint64_t T1; uint64_t T2; a = load_bigendian_64(statebytes + 0); state[0] = a; b = load_bigendian_64(statebytes + 8); state[1] = b; c = load_bigendian_64(statebytes + 16); state[2] = c; d = load_bigendian_64(statebytes + 24); state[3] = d; e = load_bigendian_64(statebytes + 32); state[4] = e; f = load_bigendian_64(statebytes + 40); state[5] = f; g = load_bigendian_64(statebytes + 48); state[6] = g; h = load_bigendian_64(statebytes + 56); state[7] = h; while (inlen >= 128) { uint64_t w0 = load_bigendian_64(in + 0); uint64_t w1 = load_bigendian_64(in + 8); uint64_t w2 = load_bigendian_64(in + 16); uint64_t w3 = load_bigendian_64(in + 24); uint64_t w4 = load_bigendian_64(in + 32); uint64_t w5 = load_bigendian_64(in + 40); uint64_t w6 = load_bigendian_64(in + 48); uint64_t w7 = load_bigendian_64(in + 56); uint64_t w8 = load_bigendian_64(in + 64); uint64_t w9 = load_bigendian_64(in + 72); uint64_t w10 = load_bigendian_64(in + 80); uint64_t w11 = load_bigendian_64(in + 88); uint64_t w12 = load_bigendian_64(in + 96); uint64_t w13 = load_bigendian_64(in + 104); uint64_t w14 = load_bigendian_64(in + 112); uint64_t w15 = load_bigendian_64(in + 120); F_64(w0, 0x428a2f98d728ae22ULL) F_64(w1, 0x7137449123ef65cdULL) F_64(w2, 0xb5c0fbcfec4d3b2fULL) F_64(w3, 0xe9b5dba58189dbbcULL) F_64(w4, 0x3956c25bf348b538ULL) F_64(w5, 0x59f111f1b605d019ULL) F_64(w6, 0x923f82a4af194f9bULL) F_64(w7, 0xab1c5ed5da6d8118ULL) F_64(w8, 0xd807aa98a3030242ULL) F_64(w9, 0x12835b0145706fbeULL) F_64(w10, 0x243185be4ee4b28cULL) F_64(w11, 0x550c7dc3d5ffb4e2ULL) F_64(w12, 0x72be5d74f27b896fULL) F_64(w13, 0x80deb1fe3b1696b1ULL) F_64(w14, 0x9bdc06a725c71235ULL) F_64(w15, 0xc19bf174cf692694ULL) EXPAND_64 F_64(w0, 0xe49b69c19ef14ad2ULL) F_64(w1, 0xefbe4786384f25e3ULL) F_64(w2, 0x0fc19dc68b8cd5b5ULL) F_64(w3, 0x240ca1cc77ac9c65ULL) F_64(w4, 0x2de92c6f592b0275ULL) F_64(w5, 0x4a7484aa6ea6e483ULL) F_64(w6, 0x5cb0a9dcbd41fbd4ULL) F_64(w7, 0x76f988da831153b5ULL) F_64(w8, 0x983e5152ee66dfabULL) F_64(w9, 0xa831c66d2db43210ULL) F_64(w10, 0xb00327c898fb213fULL) F_64(w11, 0xbf597fc7beef0ee4ULL) F_64(w12, 0xc6e00bf33da88fc2ULL) F_64(w13, 0xd5a79147930aa725ULL) F_64(w14, 0x06ca6351e003826fULL) F_64(w15, 0x142929670a0e6e70ULL) EXPAND_64 F_64(w0, 0x27b70a8546d22ffcULL) F_64(w1, 0x2e1b21385c26c926ULL) F_64(w2, 0x4d2c6dfc5ac42aedULL) F_64(w3, 0x53380d139d95b3dfULL) F_64(w4, 0x650a73548baf63deULL) F_64(w5, 0x766a0abb3c77b2a8ULL) F_64(w6, 0x81c2c92e47edaee6ULL) F_64(w7, 0x92722c851482353bULL) F_64(w8, 0xa2bfe8a14cf10364ULL) F_64(w9, 0xa81a664bbc423001ULL) F_64(w10, 0xc24b8b70d0f89791ULL) F_64(w11, 0xc76c51a30654be30ULL) F_64(w12, 0xd192e819d6ef5218ULL) F_64(w13, 0xd69906245565a910ULL) F_64(w14, 0xf40e35855771202aULL) F_64(w15, 0x106aa07032bbd1b8ULL) EXPAND_64 F_64(w0, 0x19a4c116b8d2d0c8ULL) F_64(w1, 0x1e376c085141ab53ULL) F_64(w2, 0x2748774cdf8eeb99ULL) F_64(w3, 0x34b0bcb5e19b48a8ULL) F_64(w4, 0x391c0cb3c5c95a63ULL) F_64(w5, 0x4ed8aa4ae3418acbULL) F_64(w6, 0x5b9cca4f7763e373ULL) F_64(w7, 0x682e6ff3d6b2b8a3ULL) F_64(w8, 0x748f82ee5defb2fcULL) F_64(w9, 0x78a5636f43172f60ULL) F_64(w10, 0x84c87814a1f0ab72ULL) F_64(w11, 0x8cc702081a6439ecULL) F_64(w12, 0x90befffa23631e28ULL) F_64(w13, 0xa4506cebde82bde9ULL) F_64(w14, 0xbef9a3f7b2c67915ULL) F_64(w15, 0xc67178f2e372532bULL) EXPAND_64 F_64(w0, 0xca273eceea26619cULL) F_64(w1, 0xd186b8c721c0c207ULL) F_64(w2, 0xeada7dd6cde0eb1eULL) F_64(w3, 0xf57d4f7fee6ed178ULL) F_64(w4, 0x06f067aa72176fbaULL) F_64(w5, 0x0a637dc5a2c898a6ULL) F_64(w6, 0x113f9804bef90daeULL) F_64(w7, 0x1b710b35131c471bULL) F_64(w8, 0x28db77f523047d84ULL) F_64(w9, 0x32caab7b40c72493ULL) F_64(w10, 0x3c9ebe0a15c9bebcULL) F_64(w11, 0x431d67c49c100d4cULL) F_64(w12, 0x4cc5d4becb3e42b6ULL) F_64(w13, 0x597f299cfc657e2aULL) F_64(w14, 0x5fcb6fab3ad6faecULL) F_64(w15, 0x6c44198c4a475817ULL) a += state[0]; b += state[1]; c += state[2]; d += state[3]; e += state[4]; f += state[5]; g += state[6]; h += state[7]; state[0] = a; state[1] = b; state[2] = c; state[3] = d; state[4] = e; state[5] = f; state[6] = g; state[7] = h; in += 128; inlen -= 128; } store_bigendian_64(statebytes + 0, state[0]); store_bigendian_64(statebytes + 8, state[1]); store_bigendian_64(statebytes + 16, state[2]); store_bigendian_64(statebytes + 24, state[3]); store_bigendian_64(statebytes + 32, state[4]); store_bigendian_64(statebytes + 40, state[5]); store_bigendian_64(statebytes + 48, state[6]); store_bigendian_64(statebytes + 56, state[7]); return inlen; } static const uint8_t iv_224[32] = { 0xc1, 0x05, 0x9e, 0xd8, 0x36, 0x7c, 0xd5, 0x07, 0x30, 0x70, 0xdd, 0x17, 0xf7, 0x0e, 0x59, 0x39, 0xff, 0xc0, 0x0b, 0x31, 0x68, 0x58, 0x15, 0x11, 0x64, 0xf9, 0x8f, 0xa7, 0xbe, 0xfa, 0x4f, 0xa4 }; static const uint8_t iv_256[32] = { 0x6a, 0x09, 0xe6, 0x67, 0xbb, 0x67, 0xae, 0x85, 0x3c, 0x6e, 0xf3, 0x72, 0xa5, 0x4f, 0xf5, 0x3a, 0x51, 0x0e, 0x52, 0x7f, 0x9b, 0x05, 0x68, 0x8c, 0x1f, 0x83, 0xd9, 0xab, 0x5b, 0xe0, 0xcd, 0x19 }; static const uint8_t iv_384[64] = { 0xcb, 0xbb, 0x9d, 0x5d, 0xc1, 0x05, 0x9e, 0xd8, 0x62, 0x9a, 0x29, 0x2a, 0x36, 0x7c, 0xd5, 0x07, 0x91, 0x59, 0x01, 0x5a, 0x30, 0x70, 0xdd, 0x17, 0x15, 0x2f, 0xec, 0xd8, 0xf7, 0x0e, 0x59, 0x39, 0x67, 0x33, 0x26, 0x67, 0xff, 0xc0, 0x0b, 0x31, 0x8e, 0xb4, 0x4a, 0x87, 0x68, 0x58, 0x15, 0x11, 0xdb, 0x0c, 0x2e, 0x0d, 0x64, 0xf9, 0x8f, 0xa7, 0x47, 0xb5, 0x48, 0x1d, 0xbe, 0xfa, 0x4f, 0xa4 }; static const uint8_t iv_512[64] = { 0x6a, 0x09, 0xe6, 0x67, 0xf3, 0xbc, 0xc9, 0x08, 0xbb, 0x67, 0xae, 0x85, 0x84, 0xca, 0xa7, 0x3b, 0x3c, 0x6e, 0xf3, 0x72, 0xfe, 0x94, 0xf8, 0x2b, 0xa5, 0x4f, 0xf5, 0x3a, 0x5f, 0x1d, 0x36, 0xf1, 0x51, 0x0e, 0x52, 0x7f, 0xad, 0xe6, 0x82, 0xd1, 0x9b, 0x05, 0x68, 0x8c, 0x2b, 0x3e, 0x6c, 0x1f, 0x1f, 0x83, 0xd9, 0xab, 0xfb, 0x41, 0xbd, 0x6b, 0x5b, 0xe0, 0xcd, 0x19, 0x13, 0x7e, 0x21, 0x79 }; void sha224_inc_init(sha224ctx *state) { state->ctx = malloc(PQC_SHA256CTX_BYTES); if (state->ctx == NULL) { exit(111); } for (size_t i = 0; i < 32; ++i) { state->ctx[i] = iv_224[i]; } for (size_t i = 32; i < 40; ++i) { state->ctx[i] = 0; } } void sha256_inc_init(sha256ctx *state) { state->ctx = malloc(PQC_SHA256CTX_BYTES); if (state->ctx == NULL) { exit(111); } for (size_t i = 0; i < 32; ++i) { state->ctx[i] = iv_256[i]; } for (size_t i = 32; i < 40; ++i) { state->ctx[i] = 0; } } void sha384_inc_init(sha384ctx *state) { state->ctx = malloc(PQC_SHA512CTX_BYTES); if (state->ctx == NULL) { exit(111); } for (size_t i = 0; i < 64; ++i) { state->ctx[i] = iv_384[i]; } for (size_t i = 64; i < 72; ++i) { state->ctx[i] = 0; } } void sha512_inc_init(sha512ctx *state) { state->ctx = malloc(PQC_SHA512CTX_BYTES); if (state->ctx == NULL) { exit(111); } for (size_t i = 0; i < 64; ++i) { state->ctx[i] = iv_512[i]; } for (size_t i = 64; i < 72; ++i) { state->ctx[i] = 0; } } void sha224_inc_ctx_clone(sha224ctx *stateout, const sha224ctx *statein) { stateout->ctx = malloc(PQC_SHA256CTX_BYTES); if (stateout->ctx == NULL) { exit(111); } memcpy(stateout->ctx, statein->ctx, PQC_SHA256CTX_BYTES); } void sha256_inc_ctx_clone(sha256ctx *stateout, const sha256ctx *statein) { stateout->ctx = malloc(PQC_SHA256CTX_BYTES); if (stateout->ctx == NULL) { exit(111); } memcpy(stateout->ctx, statein->ctx, PQC_SHA256CTX_BYTES); } void sha384_inc_ctx_clone(sha384ctx *stateout, const sha384ctx *statein) { stateout->ctx = malloc(PQC_SHA512CTX_BYTES); if (stateout->ctx == NULL) { exit(111); } memcpy(stateout->ctx, statein->ctx, PQC_SHA512CTX_BYTES); } void sha512_inc_ctx_clone(sha512ctx *stateout, const sha512ctx *statein) { stateout->ctx = malloc(PQC_SHA512CTX_BYTES); if (stateout->ctx == NULL) { exit(111); } memcpy(stateout->ctx, statein->ctx, PQC_SHA512CTX_BYTES); } /* Destroy the hash state. */ void sha224_inc_ctx_release(sha224ctx *state) { free(state->ctx); } /* Destroy the hash state. */ void sha256_inc_ctx_release(sha256ctx *state) { free(state->ctx); } /* Destroy the hash state. */ void sha384_inc_ctx_release(sha384ctx *state) { free(state->ctx); } /* Destroy the hash state. */ void sha512_inc_ctx_release(sha512ctx *state) { free(state->ctx); } void sha256_inc_blocks(sha256ctx *state, const uint8_t *in, size_t inblocks) { uint64_t bytes = load_bigendian_64(state->ctx + 32); crypto_hashblocks_sha256(state->ctx, in, 64 * inblocks); bytes += 64 * inblocks; store_bigendian_64(state->ctx + 32, bytes); } void sha224_inc_blocks(sha224ctx *state, const uint8_t *in, size_t inblocks) { sha256_inc_blocks((sha256ctx*) state, in, inblocks); } void sha512_inc_blocks(sha512ctx *state, const uint8_t *in, size_t inblocks) { uint64_t bytes = load_bigendian_64(state->ctx + 64); crypto_hashblocks_sha512(state->ctx, in, 128 * inblocks); bytes += 128 * inblocks; store_bigendian_64(state->ctx + 64, bytes); } void sha384_inc_blocks(sha384ctx *state, const uint8_t *in, size_t inblocks) { sha512_inc_blocks((sha512ctx*) state, in, inblocks); } void sha256_inc_finalize(uint8_t *out, sha256ctx *state, const uint8_t *in, size_t inlen) { uint8_t padded[128]; uint64_t bytes = load_bigendian_64(state->ctx + 32) + inlen; crypto_hashblocks_sha256(state->ctx, in, inlen); in += inlen; inlen &= 63; in -= inlen; for (size_t i = 0; i < inlen; ++i) { padded[i] = in[i]; } padded[inlen] = 0x80; if (inlen < 56) { for (size_t i = inlen + 1; i < 56; ++i) { padded[i] = 0; } padded[56] = (uint8_t) (bytes >> 53); padded[57] = (uint8_t) (bytes >> 45); padded[58] = (uint8_t) (bytes >> 37); padded[59] = (uint8_t) (bytes >> 29); padded[60] = (uint8_t) (bytes >> 21); padded[61] = (uint8_t) (bytes >> 13); padded[62] = (uint8_t) (bytes >> 5); padded[63] = (uint8_t) (bytes << 3); crypto_hashblocks_sha256(state->ctx, padded, 64); } else { for (size_t i = inlen + 1; i < 120; ++i) { padded[i] = 0; } padded[120] = (uint8_t) (bytes >> 53); padded[121] = (uint8_t) (bytes >> 45); padded[122] = (uint8_t) (bytes >> 37); padded[123] = (uint8_t) (bytes >> 29); padded[124] = (uint8_t) (bytes >> 21); padded[125] = (uint8_t) (bytes >> 13); padded[126] = (uint8_t) (bytes >> 5); padded[127] = (uint8_t) (bytes << 3); crypto_hashblocks_sha256(state->ctx, padded, 128); } for (size_t i = 0; i < 32; ++i) { out[i] = state->ctx[i]; } sha256_inc_ctx_release(state); } void sha224_inc_finalize(uint8_t *out, sha224ctx *state, const uint8_t *in, size_t inlen) { uint8_t tmp[32]; sha256_inc_finalize(tmp, (sha256ctx*)state, in, inlen); for (size_t i = 0; i < 28; ++i) { out[i] = tmp[i]; } } void sha512_inc_finalize(uint8_t *out, sha512ctx *state, const uint8_t *in, size_t inlen) { uint8_t padded[256]; uint64_t bytes = load_bigendian_64(state->ctx + 64) + inlen; crypto_hashblocks_sha512(state->ctx, in, inlen); in += inlen; inlen &= 127; in -= inlen; for (size_t i = 0; i < inlen; ++i) { padded[i] = in[i]; } padded[inlen] = 0x80; if (inlen < 112) { for (size_t i = inlen + 1; i < 119; ++i) { padded[i] = 0; } padded[119] = (uint8_t) (bytes >> 61); padded[120] = (uint8_t) (bytes >> 53); padded[121] = (uint8_t) (bytes >> 45); padded[122] = (uint8_t) (bytes >> 37); padded[123] = (uint8_t) (bytes >> 29); padded[124] = (uint8_t) (bytes >> 21); padded[125] = (uint8_t) (bytes >> 13); padded[126] = (uint8_t) (bytes >> 5); padded[127] = (uint8_t) (bytes << 3); crypto_hashblocks_sha512(state->ctx, padded, 128); } else { for (size_t i = inlen + 1; i < 247; ++i) { padded[i] = 0; } padded[247] = (uint8_t) (bytes >> 61); padded[248] = (uint8_t) (bytes >> 53); padded[249] = (uint8_t) (bytes >> 45); padded[250] = (uint8_t) (bytes >> 37); padded[251] = (uint8_t) (bytes >> 29); padded[252] = (uint8_t) (bytes >> 21); padded[253] = (uint8_t) (bytes >> 13); padded[254] = (uint8_t) (bytes >> 5); padded[255] = (uint8_t) (bytes << 3); crypto_hashblocks_sha512(state->ctx, padded, 256); } for (size_t i = 0; i < 64; ++i) { out[i] = state->ctx[i]; } sha512_inc_ctx_release(state); } void sha384_inc_finalize(uint8_t *out, sha384ctx *state, const uint8_t *in, size_t inlen) { uint8_t tmp[64]; sha512_inc_finalize(tmp, (sha512ctx*)state, in, inlen); for (size_t i = 0; i < 48; ++i) { out[i] = tmp[i]; } } void sha224(uint8_t *out, const uint8_t *in, size_t inlen) { sha224ctx state; sha224_inc_init(&state); sha224_inc_finalize(out, &state, in, inlen); } void sha256(uint8_t *out, const uint8_t *in, size_t inlen) { sha256ctx state; sha256_inc_init(&state); sha256_inc_finalize(out, &state, in, inlen); } void sha384(uint8_t *out, const uint8_t *in, size_t inlen) { sha384ctx state; sha384_inc_init(&state); sha384_inc_finalize(out, &state, in, inlen); } void sha512(uint8_t *out, const uint8_t *in, size_t inlen) { sha512ctx state; sha512_inc_init(&state); sha512_inc_finalize(out, &state, in, inlen); }