#include "gf2x.h" #include "parameters.h" #include #include /** * @file gf2x.c * @brief Implementation of multiplication of two polynomials */ /** * @brief Caryless multiplication of two words of 64 bits * * Implemntation of the algorithm mul1 in https://hal.inria.fr/inria-00188261v4/document. * With w = 64 and s = 4 * * @param[out] c The result c = a * b * @param[in] a The first value a * @param[in] b The second value b */ static void base_mul(uint64_t *c, uint64_t a, uint64_t b) { uint64_t h = 0; uint64_t l = 0; uint64_t g; uint64_t u[16] = {0}; uint64_t mask_tab[4] = {0}; uint64_t tmp1, tmp2; // Step 1 u[0] = 0; u[1] = b & (((uint64_t)1 << (64 - 4)) - 1); u[2] = u[1] << 1; u[3] = u[2] ^ u[1]; u[4] = u[2] << 1; u[5] = u[4] ^ u[1]; u[6] = u[3] << 1; u[7] = u[6] ^ u[1]; u[8] = u[4] << 1; u[9] = u[8] ^ u[1]; u[10] = u[5] << 1; u[11] = u[10] ^ u[1]; u[12] = u[6] << 1; u[13] = u[12] ^ u[1]; u[14] = u[7] << 1; u[15] = u[14] ^ u[1]; g = 0; tmp1 = a & 0x0f; for (size_t i = 0; i < 16; ++i) { tmp2 = tmp1 - i; g ^= (u[i] & (uint64_t)(0 - (1 - ((uint64_t)(tmp2 | (0 - tmp2)) >> 63)))); } l = g; h = 0; // Step 2 for (size_t i = 4; i < 64; i += 4) { g = 0; tmp1 = (a >> i) & 0x0f; for (size_t j = 0; j < 16; ++j) { tmp2 = tmp1 - j; g ^= (u[j] & (uint64_t)(0 - (1 - ((uint64_t)(tmp2 | (0 - tmp2)) >> 63)))); } l ^= g << i; h ^= g >> (64 - i); } // Step 3 mask_tab [0] = 0 - ((b >> 60) & 1); mask_tab [1] = 0 - ((b >> 61) & 1); mask_tab [2] = 0 - ((b >> 62) & 1); mask_tab [3] = 0 - ((b >> 63) & 1); l ^= ((a << 60) & mask_tab[0]); h ^= ((a >> 4) & mask_tab[0]); l ^= ((a << 61) & mask_tab[1]); h ^= ((a >> 3) & mask_tab[1]); l ^= ((a << 62) & mask_tab[2]); h ^= ((a >> 2) & mask_tab[2]); l ^= ((a << 63) & mask_tab[3]); h ^= ((a >> 1) & mask_tab[3]); c[0] = l; c[1] = h; } static void karatsuba_add1(uint64_t *alh, uint64_t *blh, const uint64_t *a, const uint64_t *b, size_t size_l, size_t size_h) { for (size_t i = 0; i < size_h; ++i) { alh[i] = a[i] ^ a[i + size_l]; blh[i] = b[i] ^ b[i + size_l]; } if (size_h < size_l) { alh[size_h] = a[size_h]; blh[size_h] = b[size_h]; } } static void karatsuba_add2(uint64_t *o, uint64_t *tmp1, const uint64_t *tmp2, size_t size_l, size_t size_h) { for (size_t i = 0; i < (2 * size_l); ++i) { tmp1[i] = tmp1[i] ^ o[i]; } for (size_t i = 0; i < ( 2 * size_h); ++i) { tmp1[i] = tmp1[i] ^ tmp2[i]; } for (size_t i = 0; i < (2 * size_l); ++i) { o[i + size_l] = o[i + size_l] ^ tmp1[i]; } } /** * Karatsuba multiplication of a and b, Implementation inspired from the NTL library. * * @param[out] o Polynomial * @param[in] a Polynomial * @param[in] b Polynomial * @param[in] size Length of polynomial * @param[in] stack Length of polynomial */ static void karatsuba(uint64_t *o, const uint64_t *a, const uint64_t *b, size_t size, uint64_t *stack) { size_t size_l, size_h; const uint64_t *ah, *bh; if (size == 1) { base_mul(o, a[0], b[0]); return; } size_h = size / 2; size_l = (size + 1) / 2; uint64_t *alh = stack; uint64_t *blh = alh + size_l; uint64_t *tmp1 = blh + size_l; uint64_t *tmp2 = o + 2 * size_l; stack += 4 * size_l; ah = a + size_l; bh = b + size_l; karatsuba(o, a, b, size_l, stack); karatsuba(tmp2, ah, bh, size_h, stack); karatsuba_add1(alh, blh, a, b, size_l, size_h); karatsuba(tmp1, alh, blh, size_l, stack); karatsuba_add2(o, tmp1, tmp2, size_l, size_h); } /** * @brief Compute o(x) = a(x) mod \f$ X^n - 1\f$ * * This function computes the modular reduction of the polynomial a(x) * * @param[in] a Pointer to the polynomial a(x) * @param[out] o Pointer to the result */ static void reduce(uint64_t *o, const uint64_t *a) { uint64_t r; uint64_t carry; for (size_t i = 0; i < VEC_N_SIZE_64; ++i) { r = a[i + VEC_N_SIZE_64 - 1] >> (PARAM_N & 0x3F); carry = a[i + VEC_N_SIZE_64] << (64 - (PARAM_N & 0x3F)); o[i] = a[i] ^ r ^ carry; } o[VEC_N_SIZE_64 - 1] &= RED_MASK; } /** * @brief Multiply two polynomials modulo \f$ X^n - 1\f$. * * This functions multiplies polynomials v1 and v2. * The multiplication is done modulo \f$ X^n - 1\f$. * * @param[out] o Product of v1 and v2 * @param[in] v1 Pointer to the first polynomial * @param[in] v2 Pointer to the second polynomial */ void PQCLEAN_HQC192_CLEAN_vect_mul(uint64_t *o, const uint64_t *v1, const uint64_t *v2) { uint64_t stack[VEC_N_SIZE_64 << 3] = {0}; uint64_t o_karat[VEC_N_SIZE_64 << 1] = {0}; karatsuba(o_karat, v1, v2, VEC_N_SIZE_64, stack); reduce(o, o_karat); }