/* This file is for secret-key generation */ #include "sk_gen.h" #include "controlbits.h" #include "crypto_declassify.h" #include "crypto_uint16.h" #include "gf.h" #include "params.h" #include "randombytes.h" #include "transpose.h" #include "util.h" #include "vec.h" static inline crypto_uint16 gf_is_zero_declassify(gf t) { crypto_uint16 mask = crypto_uint16_zero_mask(t); crypto_declassify(&mask, sizeof mask); return mask; } /* input: v, a list of GF(2^m) elements in bitsliced form */ /* input: idx, an index */ /* return: the idx-th element in v */ static inline gf extract_gf(const vec v[GFBITS], int idx) { int i; gf ret; ret = 0; for (i = GFBITS - 1; i >= 0; i--) { ret <<= 1; ret |= (v[i] >> idx) & 1; } return ret; } /* same as extract_gf but reduces return value to 1 bit */ static inline vec extract_bit(const vec v[GFBITS], int idx) { int i; vec ret; ret = 0; for (i = GFBITS - 1; i >= 0; i--) { ret |= v[i]; } return (ret >> idx) & 1; } /* input: f, element in GF((2^m)^t) */ /* output: out, minimal polynomial of f */ /* return: 0 for success and -1 for failure */ int genpoly_gen(gf *out, gf *f) { int i, j, k; gf t, inv; vec v[ GFBITS ], buf[ GFBITS ][ 64 ], mat[ 64 ][ GFBITS ], mask; // fill matrix buf[0][0] = 1; for (i = 1; i < GFBITS; i++) { buf[i][0] = 0; } for (j = 0; j < GFBITS; j++) { for (i = SYS_T - 1; i >= 0; i--) { v[j] <<= 1; v[j] |= (f[i] >> j) & 1; } } for (i = 0; i < GFBITS; i++) { buf[i][1] = v[i]; } for (k = 2; k <= SYS_T; k++) { vec_GF_mul(v, v, f); if (k < SYS_T) { for (i = 0; i < GFBITS; i++) { buf[i][k] = v[i]; } } else { for (i = 0; i < SYS_T; i++) { out[i] = extract_gf(v, i); } } } for (i = 0; i < GFBITS; i++) { transpose_64x64(buf[i]); } for (j = 0; j < SYS_T; j++) { for (i = 0; i < GFBITS; i++) { mat[j][i] = buf[i][j]; } } // gaussian for (i = 0; i < SYS_T; i++) { for (j = i + 1; j < SYS_T; j++) { mask = extract_bit(mat[i], i); mask -= 1; for (k = 0; k < GFBITS; k++) { mat[i][k] ^= mat[j][k] & mask; } out[i] ^= out[j] & mask; } // t = extract_gf(mat[i], i); if (gf_is_zero_declassify(t)) { return -1; // return if not systematic } // inv = gf_inv(t); vec_mul_gf(mat[i], mat[i], inv); out[i] = gf_mul(out[i], inv); for (j = 0; j < SYS_T; j++) { if (j != i) { t = extract_gf(mat[j], i); vec_mul_gf(v, mat[i], t); vec_add(mat[j], mat[j], v); out[j] ^= gf_mul(out[i], t); } } } return 0; }