/* This file is for Niederreiter encryption */ #include "util.h" #include "params.h" #include "randombytes.h" #include #include #include #include #include "crypto_declassify.h" #include "crypto_uint16.h" #include "crypto_uint32.h" #include "gf.h" /* include last because of conflict with unistd.h encrypt function */ #include "encrypt.h" static inline crypto_uint16 uint16_is_smaller_declassify(uint16_t t, uint16_t u) { crypto_uint16 mask = crypto_uint16_smaller_mask(t, u); crypto_declassify(&mask, sizeof mask); return mask; } static inline crypto_uint32 uint32_is_equal_declassify(uint32_t t, uint32_t u) { crypto_uint32 mask = crypto_uint32_equal_mask(t, u); crypto_declassify(&mask, sizeof mask); return mask; } static inline unsigned char same_mask(uint16_t x, uint16_t y) { uint32_t mask; mask = x ^ y; mask -= 1; mask >>= 31; mask = -mask; return mask & 0xFF; } /* output: e, an error vector of weight t */ static void gen_e(unsigned char *e) { int i, j, eq, count; union { uint16_t nums[ SYS_T * 2 ]; unsigned char bytes[ SYS_T * 2 * sizeof(uint16_t) ]; } buf; uint16_t ind[ SYS_T ]; unsigned char mask; unsigned char val[ SYS_T ]; while (1) { randombytes(buf.bytes, sizeof(buf)); for (i = 0; i < SYS_T * 2; i++) { buf.nums[i] = load_gf(buf.bytes + i * 2); } // moving and counting indices in the correct range count = 0; for (i = 0; i < SYS_T * 2 && count < SYS_T; i++) { if (uint16_is_smaller_declassify(buf.nums[i], SYS_N)) { ind[ count++ ] = buf.nums[i]; } } if (count < SYS_T) { continue; } // check for repetition eq = 0; for (i = 1; i < SYS_T; i++) { for (j = 0; j < i; j++) { if (uint32_is_equal_declassify(ind[i], ind[j])) { eq = 1; } } } if (eq == 0) { break; } } for (j = 0; j < SYS_T; j++) { val[j] = 1 << (ind[j] & 7); } for (i = 0; i < SYS_N / 8; i++) { e[i] = 0; for (j = 0; j < SYS_T; j++) { mask = same_mask((uint16_t)i, ind[j] >> 3); e[i] |= val[j] & mask; } } } /* input: public key pk, error vector e */ /* output: syndrome s */ static void syndrome(unsigned char *s, const unsigned char *pk, const unsigned char *e) { unsigned char b, row[SYS_N / 8]; const unsigned char *pk_ptr = pk; int i, j; for (i = 0; i < SYND_BYTES; i++) { s[i] = 0; } for (i = 0; i < PK_NROWS; i++) { for (j = 0; j < SYS_N / 8; j++) { row[j] = 0; } for (j = 0; j < PK_ROW_BYTES; j++) { row[ SYS_N / 8 - PK_ROW_BYTES + j ] = pk_ptr[j]; } row[i / 8] |= 1 << (i % 8); b = 0; for (j = 0; j < SYS_N / 8; j++) { b ^= row[j] & e[j]; } b ^= b >> 4; b ^= b >> 2; b ^= b >> 1; b &= 1; s[ i / 8 ] |= (b << (i % 8)); pk_ptr += PK_ROW_BYTES; } } void encrypt(unsigned char *s, const unsigned char *pk, unsigned char *e) { gen_e(e); syndrome(s, pk, e); }