/* This file is for secret-key generation */ #include "sk_gen.h" #include "controlbits.h" #include "crypto_declassify.h" #include "crypto_uint16.h" #include "gf.h" #include "params.h" #include "randombytes.h" #include "util.h" static inline crypto_uint16 gf_is_zero_declassify(gf t) { crypto_uint16 mask = crypto_uint16_zero_mask(t); crypto_declassify(&mask, sizeof mask); return mask; } /* input: f, element in GF((2^m)^t) */ /* output: out, minimal polynomial of f */ /* return: 0 for success and -1 for failure */ int genpoly_gen(gf *out, gf *f) { int i, j, k, c; gf mat[ SYS_T + 1 ][ SYS_T ]; gf mask, inv, t; // fill matrix mat[0][0] = 1; for (i = 1; i < SYS_T; i++) { mat[0][i] = 0; } for (i = 0; i < SYS_T; i++) { mat[1][i] = f[i]; } for (j = 2; j <= SYS_T; j++) { GF_mul(mat[j], mat[j - 1], f); } // gaussian for (j = 0; j < SYS_T; j++) { for (k = j + 1; k < SYS_T; k++) { mask = gf_iszero(mat[ j ][ j ]); for (c = j; c < SYS_T + 1; c++) { mat[ c ][ j ] ^= mat[ c ][ k ] & mask; } } if ( gf_is_zero_declassify(mat[ j ][ j ]) ) { // return if not systematic return -1; } inv = gf_inv(mat[j][j]); for (c = j; c < SYS_T + 1; c++) { mat[ c ][ j ] = gf_mul(mat[ c ][ j ], inv) ; } for (k = 0; k < SYS_T; k++) { if (k != j) { t = mat[ j ][ k ]; for (c = j; c < SYS_T + 1; c++) { mat[ c ][ k ] ^= gf_mul(mat[ c ][ j ], t); } } } } for (i = 0; i < SYS_T; i++) { out[i] = mat[ SYS_T ][ i ]; } return 0; }