#include #include #include #include "address.h" #include "context.h" #include "fors.h" #include "hash.h" #include "merkle.h" #include "nistapi.h" #include "params.h" #include "randombytes.h" #include "thash.h" #include "utils.h" #include "wots.h" /* * Returns the length of a secret key, in bytes */ size_t crypto_sign_secretkeybytes(void) { return CRYPTO_SECRETKEYBYTES; } /* * Returns the length of a public key, in bytes */ size_t crypto_sign_publickeybytes(void) { return CRYPTO_PUBLICKEYBYTES; } /* * Returns the length of a signature, in bytes */ size_t crypto_sign_bytes(void) { return CRYPTO_BYTES; } /* * Returns the length of the seed required to generate a key pair, in bytes */ size_t crypto_sign_seedbytes(void) { return CRYPTO_SEEDBYTES; } /* * Generates an SPX key pair given a seed of length * Format sk: [SK_SEED || SK_PRF || PUB_SEED || root] * Format pk: [PUB_SEED || root] */ int crypto_sign_seed_keypair(uint8_t *pk, uint8_t *sk, const uint8_t *seed) { spx_ctx ctx; /* Initialize SK_SEED, SK_PRF and PUB_SEED from seed. */ memcpy(sk, seed, CRYPTO_SEEDBYTES); memcpy(pk, sk + 2 * SPX_N, SPX_N); memcpy(ctx.pub_seed, pk, SPX_N); memcpy(ctx.sk_seed, sk, SPX_N); /* This hook allows the hash function instantiation to do whatever preparation or computation it needs, based on the public seed. */ initialize_hash_function(&ctx); /* Compute root node of the top-most subtree. */ merkle_gen_root(sk + 3 * SPX_N, &ctx); // cleanup free_hash_function(&ctx); memcpy(pk + SPX_N, sk + 3 * SPX_N, SPX_N); return 0; } /* * Generates an SPX key pair. * Format sk: [SK_SEED || SK_PRF || PUB_SEED || root] * Format pk: [PUB_SEED || root] */ int crypto_sign_keypair(uint8_t *pk, uint8_t *sk) { uint8_t seed[CRYPTO_SEEDBYTES]; randombytes(seed, CRYPTO_SEEDBYTES); crypto_sign_seed_keypair(pk, sk, seed); return 0; } /** * Returns an array containing a detached signature. */ int crypto_sign_signature(uint8_t *sig, size_t *siglen, const uint8_t *m, size_t mlen, const uint8_t *sk) { spx_ctx ctx; const uint8_t *sk_prf = sk + SPX_N; const uint8_t *pk = sk + 2 * SPX_N; uint8_t optrand[SPX_N]; uint8_t mhash[SPX_FORS_MSG_BYTES]; uint8_t root[SPX_N]; uint32_t i; uint64_t tree; uint32_t idx_leaf; uint32_t wots_addr[8] = {0}; uint32_t tree_addr[8] = {0}; memcpy(ctx.sk_seed, sk, SPX_N); memcpy(ctx.pub_seed, pk, SPX_N); /* This hook allows the hash function instantiation to do whatever preparation or computation it needs, based on the public seed. */ initialize_hash_function(&ctx); set_type(wots_addr, SPX_ADDR_TYPE_WOTS); set_type(tree_addr, SPX_ADDR_TYPE_HASHTREE); /* Optionally, signing can be made non-deterministic using optrand. This can help counter side-channel attacks that would benefit from getting a large number of traces when the signer uses the same nodes. */ randombytes(optrand, SPX_N); /* Compute the digest randomization value. */ gen_message_random(sig, sk_prf, optrand, m, mlen, &ctx); /* Derive the message digest and leaf index from R, PK and M. */ hash_message(mhash, &tree, &idx_leaf, sig, pk, m, mlen, &ctx); sig += SPX_N; set_tree_addr(wots_addr, tree); set_keypair_addr(wots_addr, idx_leaf); /* Sign the message hash using FORS. */ fors_sign(sig, root, mhash, &ctx, wots_addr); sig += SPX_FORS_BYTES; for (i = 0; i < SPX_D; i++) { set_layer_addr(tree_addr, i); set_tree_addr(tree_addr, tree); copy_subtree_addr(wots_addr, tree_addr); set_keypair_addr(wots_addr, idx_leaf); merkle_sign(sig, root, &ctx, wots_addr, tree_addr, idx_leaf); sig += SPX_WOTS_BYTES + SPX_TREE_HEIGHT * SPX_N; /* Update the indices for the next layer. */ idx_leaf = (tree & ((1 << SPX_TREE_HEIGHT) - 1)); tree = tree >> SPX_TREE_HEIGHT; } free_hash_function(&ctx); *siglen = SPX_BYTES; return 0; } /** * Verifies a detached signature and message under a given public key. */ int crypto_sign_verify(const uint8_t *sig, size_t siglen, const uint8_t *m, size_t mlen, const uint8_t *pk) { spx_ctx ctx; const uint8_t *pub_root = pk + SPX_N; uint8_t mhash[SPX_FORS_MSG_BYTES]; uint8_t wots_pk[SPX_WOTS_BYTES]; uint8_t root[SPX_N]; uint8_t leaf[SPX_N]; unsigned int i; uint64_t tree; uint32_t idx_leaf; uint32_t wots_addr[8] = {0}; uint32_t tree_addr[8] = {0}; uint32_t wots_pk_addr[8] = {0}; if (siglen != SPX_BYTES) { return -1; } memcpy(ctx.pub_seed, pk, SPX_N); /* This hook allows the hash function instantiation to do whatever preparation or computation it needs, based on the public seed. */ initialize_hash_function(&ctx); set_type(wots_addr, SPX_ADDR_TYPE_WOTS); set_type(tree_addr, SPX_ADDR_TYPE_HASHTREE); set_type(wots_pk_addr, SPX_ADDR_TYPE_WOTSPK); /* Derive the message digest and leaf index from R || PK || M. */ /* The additional SPX_N is a result of the hash domain separator. */ hash_message(mhash, &tree, &idx_leaf, sig, pk, m, mlen, &ctx); sig += SPX_N; /* Layer correctly defaults to 0, so no need to set_layer_addr */ set_tree_addr(wots_addr, tree); set_keypair_addr(wots_addr, idx_leaf); fors_pk_from_sig(root, sig, mhash, &ctx, wots_addr); sig += SPX_FORS_BYTES; /* For each subtree.. */ for (i = 0; i < SPX_D; i++) { set_layer_addr(tree_addr, i); set_tree_addr(tree_addr, tree); copy_subtree_addr(wots_addr, tree_addr); set_keypair_addr(wots_addr, idx_leaf); copy_keypair_addr(wots_pk_addr, wots_addr); /* The WOTS public key is only correct if the signature was correct. */ /* Initially, root is the FORS pk, but on subsequent iterations it is the root of the subtree below the currently processed subtree. */ wots_pk_from_sig(wots_pk, sig, root, &ctx, wots_addr); sig += SPX_WOTS_BYTES; /* Compute the leaf node using the WOTS public key. */ thash(leaf, wots_pk, SPX_WOTS_LEN, &ctx, wots_pk_addr); /* Compute the root node of this subtree. */ compute_root(root, leaf, idx_leaf, 0, sig, SPX_TREE_HEIGHT, &ctx, tree_addr); sig += SPX_TREE_HEIGHT * SPX_N; /* Update the indices for the next layer. */ idx_leaf = (tree & ((1 << SPX_TREE_HEIGHT) - 1)); tree = tree >> SPX_TREE_HEIGHT; } // cleanup free_hash_function(&ctx); /* Check if the root node equals the root node in the public key. */ if (memcmp(root, pub_root, SPX_N) != 0) { return -1; } return 0; } /** * Returns an array containing the signature followed by the message. */ int crypto_sign(uint8_t *sm, size_t *smlen, const uint8_t *m, size_t mlen, const uint8_t *sk) { size_t siglen; crypto_sign_signature(sm, &siglen, m, mlen, sk); memmove(sm + SPX_BYTES, m, mlen); *smlen = siglen + mlen; return 0; } /** * Verifies a given signature-message pair under a given public key. */ int crypto_sign_open(uint8_t *m, size_t *mlen, const uint8_t *sm, size_t smlen, const uint8_t *pk) { /* The API caller does not necessarily know what size a signature should be but SPHINCS+ signatures are always exactly SPX_BYTES. */ if (smlen < SPX_BYTES) { memset(m, 0, smlen); *mlen = 0; return -1; } *mlen = smlen - SPX_BYTES; if (crypto_sign_verify(sm, SPX_BYTES, sm + SPX_BYTES, *mlen, pk)) { memset(m, 0, smlen); *mlen = 0; return -1; } /* If verification was successful, move the message to the right place. */ memmove(m, sm + SPX_BYTES, *mlen); return 0; }