#include "align.h" #include "cbd.h" #include "indcpa.h" #include "ntt.h" #include "params.h" #include "poly.h" #include "polyvec.h" #include "randombytes.h" #include "rejsample.h" #include "symmetric.h" #include #include #include /************************************************* * Name: pack_pk * * Description: Serialize the public key as concatenation of the * serialized vector of polynomials pk and the * public seed used to generate the matrix A. * The polynomial coefficients in pk are assumed to * lie in the invertal [0,q], i.e. pk must be reduced * by PQCLEAN_KYBER768_AVX2_polyvec_reduce(). * * Arguments: uint8_t *r: pointer to the output serialized public key * polyvec *pk: pointer to the input public-key polyvec * const uint8_t *seed: pointer to the input public seed **************************************************/ static void pack_pk(uint8_t r[KYBER_INDCPA_PUBLICKEYBYTES], polyvec *pk, const uint8_t seed[KYBER_SYMBYTES]) { size_t i; PQCLEAN_KYBER768_AVX2_polyvec_tobytes(r, pk); for (i = 0; i < KYBER_SYMBYTES; i++) { r[i + KYBER_POLYVECBYTES] = seed[i]; } } /************************************************* * Name: unpack_pk * * Description: De-serialize public key from a byte array; * approximate inverse of pack_pk * * Arguments: - polyvec *pk: pointer to output public-key polynomial vector * - uint8_t *seed: pointer to output seed to generate matrix A * - const uint8_t *packedpk: pointer to input serialized public key **************************************************/ static void unpack_pk(polyvec *pk, uint8_t seed[KYBER_SYMBYTES], const uint8_t packedpk[KYBER_INDCPA_PUBLICKEYBYTES]) { size_t i; PQCLEAN_KYBER768_AVX2_polyvec_frombytes(pk, packedpk); for (i = 0; i < KYBER_SYMBYTES; i++) { seed[i] = packedpk[i + KYBER_POLYVECBYTES]; } } /************************************************* * Name: pack_sk * * Description: Serialize the secret key. * The polynomial coefficients in sk are assumed to * lie in the invertal [0,q], i.e. sk must be reduced * by PQCLEAN_KYBER768_AVX2_polyvec_reduce(). * * Arguments: - uint8_t *r: pointer to output serialized secret key * - polyvec *sk: pointer to input vector of polynomials (secret key) **************************************************/ static void pack_sk(uint8_t r[KYBER_INDCPA_SECRETKEYBYTES], polyvec *sk) { PQCLEAN_KYBER768_AVX2_polyvec_tobytes(r, sk); } /************************************************* * Name: unpack_sk * * Description: De-serialize the secret key; inverse of pack_sk * * Arguments: - polyvec *sk: pointer to output vector of polynomials (secret key) * - const uint8_t *packedsk: pointer to input serialized secret key **************************************************/ static void unpack_sk(polyvec *sk, const uint8_t packedsk[KYBER_INDCPA_SECRETKEYBYTES]) { PQCLEAN_KYBER768_AVX2_polyvec_frombytes(sk, packedsk); } /************************************************* * Name: pack_ciphertext * * Description: Serialize the ciphertext as concatenation of the * compressed and serialized vector of polynomials b * and the compressed and serialized polynomial v. * The polynomial coefficients in b and v are assumed to * lie in the invertal [0,q], i.e. b and v must be reduced * by PQCLEAN_KYBER768_AVX2_polyvec_reduce() and PQCLEAN_KYBER768_AVX2_poly_reduce(), respectively. * * Arguments: uint8_t *r: pointer to the output serialized ciphertext * poly *pk: pointer to the input vector of polynomials b * poly *v: pointer to the input polynomial v **************************************************/ static void pack_ciphertext(uint8_t r[KYBER_INDCPA_BYTES], polyvec *b, poly *v) { PQCLEAN_KYBER768_AVX2_polyvec_compress(r, b); PQCLEAN_KYBER768_AVX2_poly_compress(r + KYBER_POLYVECCOMPRESSEDBYTES, v); } /************************************************* * Name: unpack_ciphertext * * Description: De-serialize and decompress ciphertext from a byte array; * approximate inverse of pack_ciphertext * * Arguments: - polyvec *b: pointer to the output vector of polynomials b * - poly *v: pointer to the output polynomial v * - const uint8_t *c: pointer to the input serialized ciphertext **************************************************/ static void unpack_ciphertext(polyvec *b, poly *v, const uint8_t c[KYBER_INDCPA_BYTES]) { PQCLEAN_KYBER768_AVX2_polyvec_decompress(b, c); PQCLEAN_KYBER768_AVX2_poly_decompress(v, c + KYBER_POLYVECCOMPRESSEDBYTES); } /************************************************* * Name: rej_uniform * * Description: Run rejection sampling on uniform random bytes to generate * uniform random integers mod q * * Arguments: - int16_t *r: pointer to output array * - unsigned int len: requested number of 16-bit integers (uniform mod q) * - const uint8_t *buf: pointer to input buffer (assumed to be uniformly random bytes) * - unsigned int buflen: length of input buffer in bytes * * Returns number of sampled 16-bit integers (at most len) **************************************************/ static unsigned int rej_uniform(int16_t *r, unsigned int len, const uint8_t *buf, unsigned int buflen) { unsigned int ctr, pos; uint16_t val0, val1; ctr = pos = 0; while (ctr < len && pos + 3 <= buflen) { val0 = ((buf[pos + 0] >> 0) | ((uint16_t)buf[pos + 1] << 8)) & 0xFFF; val1 = ((buf[pos + 1] >> 4) | ((uint16_t)buf[pos + 2] << 4)) & 0xFFF; pos += 3; if (val0 < KYBER_Q) { r[ctr++] = val0; } if (ctr < len && val1 < KYBER_Q) { r[ctr++] = val1; } } return ctr; } #define gen_a(A,B) PQCLEAN_KYBER768_AVX2_gen_matrix(A,B,0) #define gen_at(A,B) PQCLEAN_KYBER768_AVX2_gen_matrix(A,B,1) /************************************************* * Name: PQCLEAN_KYBER768_AVX2_gen_matrix * * Description: Deterministically generate matrix A (or the transpose of A) * from a seed. Entries of the matrix are polynomials that look * uniformly random. Performs rejection sampling on output of * a XOF * * Arguments: - polyvec *a: pointer to ouptput matrix A * - const uint8_t *seed: pointer to input seed * - int transposed: boolean deciding whether A or A^T is generated **************************************************/ void PQCLEAN_KYBER768_AVX2_gen_matrix(polyvec *a, const uint8_t seed[32], int transposed) { unsigned int ctr0, ctr1, ctr2, ctr3; ALIGNED_UINT8(REJ_UNIFORM_AVX_NBLOCKS * SHAKE128_RATE) buf[4]; __m256i f; keccakx4_state state; xof_state state1x; f = _mm256_loadu_si256((__m256i *)seed); _mm256_store_si256(buf[0].vec, f); _mm256_store_si256(buf[1].vec, f); _mm256_store_si256(buf[2].vec, f); _mm256_store_si256(buf[3].vec, f); if (transposed) { buf[0].coeffs[32] = 0; buf[0].coeffs[33] = 0; buf[1].coeffs[32] = 0; buf[1].coeffs[33] = 1; buf[2].coeffs[32] = 0; buf[2].coeffs[33] = 2; buf[3].coeffs[32] = 1; buf[3].coeffs[33] = 0; } else { buf[0].coeffs[32] = 0; buf[0].coeffs[33] = 0; buf[1].coeffs[32] = 1; buf[1].coeffs[33] = 0; buf[2].coeffs[32] = 2; buf[2].coeffs[33] = 0; buf[3].coeffs[32] = 0; buf[3].coeffs[33] = 1; } PQCLEAN_KYBER768_AVX2_shake128x4_absorb_once(&state, buf[0].coeffs, buf[1].coeffs, buf[2].coeffs, buf[3].coeffs, 34); PQCLEAN_KYBER768_AVX2_shake128x4_squeezeblocks(buf[0].coeffs, buf[1].coeffs, buf[2].coeffs, buf[3].coeffs, REJ_UNIFORM_AVX_NBLOCKS, &state); ctr0 = PQCLEAN_KYBER768_AVX2_rej_uniform_avx(a[0].vec[0].coeffs, buf[0].coeffs); ctr1 = PQCLEAN_KYBER768_AVX2_rej_uniform_avx(a[0].vec[1].coeffs, buf[1].coeffs); ctr2 = PQCLEAN_KYBER768_AVX2_rej_uniform_avx(a[0].vec[2].coeffs, buf[2].coeffs); ctr3 = PQCLEAN_KYBER768_AVX2_rej_uniform_avx(a[1].vec[0].coeffs, buf[3].coeffs); while (ctr0 < KYBER_N || ctr1 < KYBER_N || ctr2 < KYBER_N || ctr3 < KYBER_N) { PQCLEAN_KYBER768_AVX2_shake128x4_squeezeblocks(buf[0].coeffs, buf[1].coeffs, buf[2].coeffs, buf[3].coeffs, 1, &state); ctr0 += rej_uniform(a[0].vec[0].coeffs + ctr0, KYBER_N - ctr0, buf[0].coeffs, SHAKE128_RATE); ctr1 += rej_uniform(a[0].vec[1].coeffs + ctr1, KYBER_N - ctr1, buf[1].coeffs, SHAKE128_RATE); ctr2 += rej_uniform(a[0].vec[2].coeffs + ctr2, KYBER_N - ctr2, buf[2].coeffs, SHAKE128_RATE); ctr3 += rej_uniform(a[1].vec[0].coeffs + ctr3, KYBER_N - ctr3, buf[3].coeffs, SHAKE128_RATE); } PQCLEAN_KYBER768_AVX2_poly_nttunpack(&a[0].vec[0]); PQCLEAN_KYBER768_AVX2_poly_nttunpack(&a[0].vec[1]); PQCLEAN_KYBER768_AVX2_poly_nttunpack(&a[0].vec[2]); PQCLEAN_KYBER768_AVX2_poly_nttunpack(&a[1].vec[0]); f = _mm256_loadu_si256((__m256i *)seed); _mm256_store_si256(buf[0].vec, f); _mm256_store_si256(buf[1].vec, f); _mm256_store_si256(buf[2].vec, f); _mm256_store_si256(buf[3].vec, f); if (transposed) { buf[0].coeffs[32] = 1; buf[0].coeffs[33] = 1; buf[1].coeffs[32] = 1; buf[1].coeffs[33] = 2; buf[2].coeffs[32] = 2; buf[2].coeffs[33] = 0; buf[3].coeffs[32] = 2; buf[3].coeffs[33] = 1; } else { buf[0].coeffs[32] = 1; buf[0].coeffs[33] = 1; buf[1].coeffs[32] = 2; buf[1].coeffs[33] = 1; buf[2].coeffs[32] = 0; buf[2].coeffs[33] = 2; buf[3].coeffs[32] = 1; buf[3].coeffs[33] = 2; } PQCLEAN_KYBER768_AVX2_shake128x4_absorb_once(&state, buf[0].coeffs, buf[1].coeffs, buf[2].coeffs, buf[3].coeffs, 34); PQCLEAN_KYBER768_AVX2_shake128x4_squeezeblocks(buf[0].coeffs, buf[1].coeffs, buf[2].coeffs, buf[3].coeffs, REJ_UNIFORM_AVX_NBLOCKS, &state); ctr0 = PQCLEAN_KYBER768_AVX2_rej_uniform_avx(a[1].vec[1].coeffs, buf[0].coeffs); ctr1 = PQCLEAN_KYBER768_AVX2_rej_uniform_avx(a[1].vec[2].coeffs, buf[1].coeffs); ctr2 = PQCLEAN_KYBER768_AVX2_rej_uniform_avx(a[2].vec[0].coeffs, buf[2].coeffs); ctr3 = PQCLEAN_KYBER768_AVX2_rej_uniform_avx(a[2].vec[1].coeffs, buf[3].coeffs); while (ctr0 < KYBER_N || ctr1 < KYBER_N || ctr2 < KYBER_N || ctr3 < KYBER_N) { PQCLEAN_KYBER768_AVX2_shake128x4_squeezeblocks(buf[0].coeffs, buf[1].coeffs, buf[2].coeffs, buf[3].coeffs, 1, &state); ctr0 += rej_uniform(a[1].vec[1].coeffs + ctr0, KYBER_N - ctr0, buf[0].coeffs, SHAKE128_RATE); ctr1 += rej_uniform(a[1].vec[2].coeffs + ctr1, KYBER_N - ctr1, buf[1].coeffs, SHAKE128_RATE); ctr2 += rej_uniform(a[2].vec[0].coeffs + ctr2, KYBER_N - ctr2, buf[2].coeffs, SHAKE128_RATE); ctr3 += rej_uniform(a[2].vec[1].coeffs + ctr3, KYBER_N - ctr3, buf[3].coeffs, SHAKE128_RATE); } PQCLEAN_KYBER768_AVX2_poly_nttunpack(&a[1].vec[1]); PQCLEAN_KYBER768_AVX2_poly_nttunpack(&a[1].vec[2]); PQCLEAN_KYBER768_AVX2_poly_nttunpack(&a[2].vec[0]); PQCLEAN_KYBER768_AVX2_poly_nttunpack(&a[2].vec[1]); f = _mm256_loadu_si256((__m256i *)seed); _mm256_store_si256(buf[0].vec, f); buf[0].coeffs[32] = 2; buf[0].coeffs[33] = 2; shake128_absorb(&state1x, buf[0].coeffs, 34); shake128_squeezeblocks(buf[0].coeffs, REJ_UNIFORM_AVX_NBLOCKS, &state1x); ctr0 = PQCLEAN_KYBER768_AVX2_rej_uniform_avx(a[2].vec[2].coeffs, buf[0].coeffs); while (ctr0 < KYBER_N) { shake128_squeezeblocks(buf[0].coeffs, 1, &state1x); ctr0 += rej_uniform(a[2].vec[2].coeffs + ctr0, KYBER_N - ctr0, buf[0].coeffs, SHAKE128_RATE); } xof_ctx_release(&state1x); PQCLEAN_KYBER768_AVX2_poly_nttunpack(&a[2].vec[2]); } /************************************************* * Name: PQCLEAN_KYBER768_AVX2_indcpa_keypair * * Description: Generates public and private key for the CPA-secure * public-key encryption scheme underlying Kyber * * Arguments: - uint8_t *pk: pointer to output public key * (of length KYBER_INDCPA_PUBLICKEYBYTES bytes) * - uint8_t *sk: pointer to output private key (of length KYBER_INDCPA_SECRETKEYBYTES bytes) **************************************************/ void PQCLEAN_KYBER768_AVX2_indcpa_keypair(uint8_t pk[KYBER_INDCPA_PUBLICKEYBYTES], uint8_t sk[KYBER_INDCPA_SECRETKEYBYTES]) { unsigned int i; uint8_t buf[2 * KYBER_SYMBYTES]; const uint8_t *publicseed = buf; const uint8_t *noiseseed = buf + KYBER_SYMBYTES; polyvec a[KYBER_K], e, pkpv, skpv; randombytes(buf, KYBER_SYMBYTES); hash_g(buf, buf, KYBER_SYMBYTES); gen_a(a, publicseed); PQCLEAN_KYBER768_AVX2_poly_getnoise_eta1_4x(skpv.vec + 0, skpv.vec + 1, skpv.vec + 2, e.vec + 0, noiseseed, 0, 1, 2, 3); PQCLEAN_KYBER768_AVX2_poly_getnoise_eta1_4x(e.vec + 1, e.vec + 2, pkpv.vec + 0, pkpv.vec + 1, noiseseed, 4, 5, 6, 7); PQCLEAN_KYBER768_AVX2_polyvec_ntt(&skpv); PQCLEAN_KYBER768_AVX2_polyvec_reduce(&skpv); PQCLEAN_KYBER768_AVX2_polyvec_ntt(&e); // matrix-vector multiplication for (i = 0; i < KYBER_K; i++) { PQCLEAN_KYBER768_AVX2_polyvec_basemul_acc_montgomery(&pkpv.vec[i], &a[i], &skpv); PQCLEAN_KYBER768_AVX2_poly_tomont(&pkpv.vec[i]); } PQCLEAN_KYBER768_AVX2_polyvec_add(&pkpv, &pkpv, &e); PQCLEAN_KYBER768_AVX2_polyvec_reduce(&pkpv); pack_sk(sk, &skpv); pack_pk(pk, &pkpv, publicseed); } /************************************************* * Name: PQCLEAN_KYBER768_AVX2_indcpa_enc * * Description: Encryption function of the CPA-secure * public-key encryption scheme underlying Kyber. * * Arguments: - uint8_t *c: pointer to output ciphertext * (of length KYBER_INDCPA_BYTES bytes) * - const uint8_t *m: pointer to input message * (of length KYBER_INDCPA_MSGBYTES bytes) * - const uint8_t *pk: pointer to input public key * (of length KYBER_INDCPA_PUBLICKEYBYTES) * - const uint8_t *coins: pointer to input random coins used as seed * (of length KYBER_SYMBYTES) to deterministically * generate all randomness **************************************************/ void PQCLEAN_KYBER768_AVX2_indcpa_enc(uint8_t c[KYBER_INDCPA_BYTES], const uint8_t m[KYBER_INDCPA_MSGBYTES], const uint8_t pk[KYBER_INDCPA_PUBLICKEYBYTES], const uint8_t coins[KYBER_SYMBYTES]) { unsigned int i; uint8_t seed[KYBER_SYMBYTES]; polyvec sp, pkpv, ep, at[KYBER_K], b; poly v, k, epp; unpack_pk(&pkpv, seed, pk); PQCLEAN_KYBER768_AVX2_poly_frommsg(&k, m); gen_at(at, seed); PQCLEAN_KYBER768_AVX2_poly_getnoise_eta1_4x(sp.vec + 0, sp.vec + 1, sp.vec + 2, ep.vec + 0, coins, 0, 1, 2, 3); PQCLEAN_KYBER768_AVX2_poly_getnoise_eta1_4x(ep.vec + 1, ep.vec + 2, &epp, b.vec + 0, coins, 4, 5, 6, 7); PQCLEAN_KYBER768_AVX2_polyvec_ntt(&sp); // matrix-vector multiplication for (i = 0; i < KYBER_K; i++) { PQCLEAN_KYBER768_AVX2_polyvec_basemul_acc_montgomery(&b.vec[i], &at[i], &sp); } PQCLEAN_KYBER768_AVX2_polyvec_basemul_acc_montgomery(&v, &pkpv, &sp); PQCLEAN_KYBER768_AVX2_polyvec_invntt_tomont(&b); PQCLEAN_KYBER768_AVX2_poly_invntt_tomont(&v); PQCLEAN_KYBER768_AVX2_polyvec_add(&b, &b, &ep); PQCLEAN_KYBER768_AVX2_poly_add(&v, &v, &epp); PQCLEAN_KYBER768_AVX2_poly_add(&v, &v, &k); PQCLEAN_KYBER768_AVX2_polyvec_reduce(&b); PQCLEAN_KYBER768_AVX2_poly_reduce(&v); pack_ciphertext(c, &b, &v); } /************************************************* * Name: PQCLEAN_KYBER768_AVX2_indcpa_dec * * Description: Decryption function of the CPA-secure * public-key encryption scheme underlying Kyber. * * Arguments: - uint8_t *m: pointer to output decrypted message * (of length KYBER_INDCPA_MSGBYTES) * - const uint8_t *c: pointer to input ciphertext * (of length KYBER_INDCPA_BYTES) * - const uint8_t *sk: pointer to input secret key * (of length KYBER_INDCPA_SECRETKEYBYTES) **************************************************/ void PQCLEAN_KYBER768_AVX2_indcpa_dec(uint8_t m[KYBER_INDCPA_MSGBYTES], const uint8_t c[KYBER_INDCPA_BYTES], const uint8_t sk[KYBER_INDCPA_SECRETKEYBYTES]) { polyvec b, skpv; poly v, mp; unpack_ciphertext(&b, &v, c); unpack_sk(&skpv, sk); PQCLEAN_KYBER768_AVX2_polyvec_ntt(&b); PQCLEAN_KYBER768_AVX2_polyvec_basemul_acc_montgomery(&mp, &skpv, &b); PQCLEAN_KYBER768_AVX2_poly_invntt_tomont(&mp); PQCLEAN_KYBER768_AVX2_poly_sub(&mp, &v, &mp); PQCLEAN_KYBER768_AVX2_poly_reduce(&mp); PQCLEAN_KYBER768_AVX2_poly_tomsg(m, &mp); }