/// /// @file P3_xa.cpp /// @brief Test the 3rd partial sieve function P3(x, a) /// that counts the numbers <= x that have exactly /// 3 prime factors each exceeding the a-th prime. /// /// Copyright (C) 2019 Kim Walisch, /// /// This file is distributed under the BSD License. See the COPYING /// file in the top level directory. /// #include #include #include #include #include #include #include #include using std::size_t; using namespace primecount; void check(bool OK) { std::cout << " " << (OK ? "OK" : "ERROR") << "\n"; if (!OK) std::exit(1); } int main() { std::random_device rd; std::mt19937 gen(rd()); std::uniform_int_distribution dist(5000, 10000); int threads = 1; int64_t x = dist(gen); auto primes = generate_primes(x); for (int64_t a = 1; primes[a] <= iroot<3>(x); a++) { int64_t p3 = 0; for (size_t b = a + 1; b < primes.size(); b++) for (size_t c = b; c < primes.size(); c++) for (size_t d = c; d < primes.size(); d++) if (primes[b] * primes[c] * primes[d] <= x) p3++; std::cout << "P3(" << x << ", " << a << ") = " << p3; check(p3 == P3(x, primes[a], threads)); } std::cout << std::endl; std::cout << "All tests passed successfully!" << std::endl; return 0; }