/// /// @file S2_xy.cpp /// @brief Test the computation of the special leaves /// S2(x, y) used in the Lagarias-Miller-Odlyzko /// and Deleglise-Rivat prime counting algorithms. /// /// Copyright (C) 2020 Kim Walisch, /// /// This file is distributed under the BSD License. See the COPYING /// file in the top level directory. /// #include #include #include #include #include #include #include #include #include #include #include using namespace primecount; void check(bool OK) { std::cout << " " << (OK ? "OK" : "ERROR") << "\n"; if (!OK) std::exit(1); } int main() { std::random_device rd; std::mt19937 gen(rd()); std::uniform_int_distribution dist(1, 10000000); int threads = 1; // test small x for (int i = 1; i < 30000; i++) { int64_t x = i; double alpha = get_alpha_deleglise_rivat(x); int64_t y = (int64_t) (alpha * iroot<3>(x)); int64_t pi_y = pi_noprint(y, threads); int64_t z = x / y; int64_t c = PhiTiny::get_c(y); int64_t s2 = 0; auto primes = generate_primes(y); auto lpf = generate_lpf(y); auto mu = generate_moebius(y); // special leaves for (int64_t b = c + 1; b < pi_y; b++) for (int64_t m = (y / primes[b]) + 1; m <= y; m++) if (lpf[m] > primes[b]) s2 -= mu[m] * phi(x / (primes[b] * m), b - 1); std::cout << "S2(" << x << ", " << y << ") = " << s2; check(s2 == S2_trivial(x, y, z, c, threads) + S2_easy(x, y, z, c, threads) + S2_hard(x, y, z, c, Ri(x), threads)); } // test random x for (int i = 0; i < 500; i++) { int64_t x = dist(gen); double alpha = get_alpha_deleglise_rivat(x); int64_t y = (int64_t) (alpha * iroot<3>(x)); int64_t pi_y = pi_noprint(y, threads); int64_t z = x / y; int64_t c = PhiTiny::get_c(y); int64_t s2 = 0; auto primes = generate_primes(y); auto lpf = generate_lpf(y); auto mu = generate_moebius(y); // special leaves for (int64_t b = c + 1; b < pi_y; b++) for (int64_t m = (y / primes[b]) + 1; m <= y; m++) if (lpf[m] > primes[b]) s2 -= mu[m] * phi(x / (primes[b] * m), b - 1); std::cout << "S2(" << x << ", " << y << ") = " << s2; check(s2 == S2_trivial(x, y, z, c, threads) + S2_easy(x, y, z, c, threads) + S2_hard(x, y, z, c, Ri(x), threads)); } std::cout << std::endl; std::cout << "All tests passed successfully!" << std::endl; return 0; }