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Recall the definitions of pure differential privacy and the discrete Laplace
distribution from [I], and the definition of global sensitivity from [2].

Definition 1. A randomized algorithm M : X" — ) satisfies e-differential
privacy if, for all neighboring datasets x, 2z’ € X™ (differing on a single element),
and all events E C ), we have P[M (z) € E] <e°-P[M (2') € E].

Definition 2. The discrete Laplace distribution, with scale parameter ¢, is
defined by the following probability density function, supported on the integers.
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Definition 3. The global sensitivity of a query function f(x) on a dataset
x is the maximum distance between two query outputs over any neighboring
datasets. Here, we will use the /1 metric to measure distances between results,
and the replacement definition of neighboring datasets.
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The following differential privacy mechanism is implemented for the com-
bination of the PureDpDiscreteLlaplace strategy and the Prio3Histogram or
Prio3SumVec VDAFs. Let f(z) be the VDAF’s aggregation function, oper-
ating over the integers. The aggregation function produces a query result
g = f(z) € Y. Without loss of generality, we assume the domain ) is a
vector of integers, J = Z¢. Let F, be field of prime order over which Prio3
operates. Noise is sampled from the discrete Laplace distribution Lapy, (GSs/e),
projected into the field, and added to each coordinate of aggregate share field
element vectors. Let 7y, : Z — I, and 7z : F, — Z be the natural projections
between the integers and field elements, where 77 maps field elements to [0, p).
Let 7, : 74 — Fg be the natural extension to project vectors of integers into
vectors of field elements. Let ¢* = f* (x) € IFg be the element-wise projections
of ¢ and f into the field using 7F,. The un-noised aggregate shares produced
by Prio3 are secret shares of the query result, ¢* = ¢ +¢!). Each aggregator
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samples noise from the discrete Laplace distribution and adds it to the un-noised
aggregate shares, and then sends the sum as their aggregate share to the collec-
tor. If we pessimistically assume that only one honest aggregator out of the two
aggregators is adding differential privacy noise, then the mechanism produces

M (z) = @O + @V + 7p, (Z) = ¢ + 7, <Z), where Z; <+ Lapy (GSr/e) is
drawn independently for all 1 < j < d.

Theorem 4. M (z) = 7r, (f (2)) + 7F, (Z) ,Zj < Lapz (GS¢/<) satisfies e-
differential privacy.

Proof. We will show Definition [I] holds for singleton events, where E is a set of
cardinality one, then other events will follow by a union bound.

For neighboring datasets = and 2/, let § = f(z), ¢ = f(2'), and §* =
7w, (f (7)), and let g;, g7, and Z; denote the j-th component of the respective
vectors. Then M; () = g} +mr, (Z;). Applying the probability density function
of the discrete Laplace distribution, we have:
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Since each Z; is drawn independently, the probability of the mechanism
returning some result can be found by taking the product of the probabilities
for each dimension of the result vector.
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By the definition of global sensitivity, we know [|¢—¢'[|,, < GSy. We can
break up the ¢; distance between ¢ and ¢’ by dimension, and relate this sum of
absolute values of differences to the product of multiplicative factors of e|‘“_q9 |,
in order to get the bound we need. Let §; = ¢; — q;-. By the triangle inequality,
|7z (y;) — q; + kp| < |7z (y;) — q; + kp| + |6,]. Since € > 0 and GSy > 0, then,
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Since the above holds for a fixed y, ¢ and ¢/, and any j and k, we can first add
and then multiply inequalities together.
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Then, since ||7 - '[|,, <GSy,
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This shows that, for any neighboring z and 2/, and any y, P {]\Zf () = 37} <
e P [M(x’) :gj’}.
Next, we apply union bounds. For any event £ C ), we decompose the

probabilities into that of the corresponding singleton events. (note that the
singleton events are mutually exclusive)
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Therefore, M (x) satisfies e-differential privacy. O

We will now apply this mechanism to Prio3Histogram and Prio3SumVec in
turn.



First, let the length parameter of Prio3Histogram be denoted by I. Then,
each measurement making up a dataset is an element of X = {0,1,2,...,1 — 1},
and the query result is a vector of counts, in J = ZL ;. The VDAF’s aggregation
function is our query function, f (x). It maps each measurement to a one-hot
vector, with the position of the one determined by the measurement, and adds
them up. The global sensitivity of this query function is GSy = 2. When one
measurement in a dataset is replaced with another, then either the result is
unchanged, or one count is decreased by one and another is increased by one.
Thus, the scale parameter is ¢ = 2/¢, and the mechanism will add noise drawn
independently from Lapy (2/¢) to each counter in both aggregate shares.

Let the length parameter of Prio3SumVec be denoted by [, and the bits
parameter be denoted by b. Each measurement making up a dataset is an
element of X = {O, 1,2,...,20 — 1}l. The query result is a vector of sums, in

n

Y =74, The VDAF’s aggregation function is our query function, f (z) ="
> i=1

x;. The global sensitivity of this query function is GS; = (2b — 1) -1, because
substituting one measurement may increase or decrease each component of the

. 2 1)1
vector sum by up to 2° — 1. Thus, the scale parameter is t = ( E ) , and the

b_
mechanism will add noise drawn independently from Lap; ((21)1) to each

g

sum in both aggregate shares.
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