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Recall the de�nitions of pure di�erential privacy and the discrete Laplace
distribution from [1], and the de�nition of global sensitivity from [2].

De�nition 1. A randomized algorithm M : Xn → Y satis�es ε-di�erential
privacy if, for all neighboring datasets x, x′ ∈ Xn (di�ering on a single element),
and all events E ⊆ Y, we have P [M (x) ∈ E] ≤ eε · P [M (x′) ∈ E].

De�nition 2. The discrete Laplace distribution, with scale parameter t, is
de�ned by the following probability density function, supported on the integers.

∀x ∈ Z, P
X←LapZ(t)

[X = x] =
e1/t − 1

e1/t + 1
· e−|x|/t

De�nition 3. The global sensitivity of a query function f (x) on a dataset
x is the maximum distance between two query outputs over any neighboring
datasets. Here, we will use the ℓ1 metric to measure distances between results,
and the replacement de�nition of neighboring datasets.

GSf = max
x,x′:neighboring

∥f (x)− f (x′)∥1

The following di�erential privacy mechanism is implemented for the com-
bination of the PureDpDiscreteLaplace strategy and the Prio3Histogram or
Prio3SumVec VDAFs. Let f (x) be the VDAF's aggregation function, oper-
ating over the integers. The aggregation function produces a query result
q = f (x) ∈ Y. Without loss of generality, we assume the domain Y is a
vector of integers, Y = Zd. Let Fp be �eld of prime order over which Prio3

operates. Noise is sampled from the discrete Laplace distribution LapZ (GSf/ε),
projected into the �eld, and added to each coordinate of aggregate share �eld
element vectors. Let πFp

: Z → Fp and πZ : Fp → Z be the natural projections
between the integers and �eld elements, where πZ maps �eld elements to [0, p).
Let π⃗Fp

: Zd → Fd
p be the natural extension to project vectors of integers into

vectors of �eld elements. Let q⃗∗ = f∗ (x) ∈ Fd
p be the element-wise projections

of q⃗ and f into the �eld using π⃗Fp
. The un-noised aggregate shares produced

by Prio3 are secret shares of the query result, q⃗∗ = q⃗(0)+ q⃗(1). Each aggregator
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samples noise from the discrete Laplace distribution and adds it to the un-noised
aggregate shares, and then sends the sum as their aggregate share to the collec-
tor. If we pessimistically assume that only one honest aggregator out of the two
aggregators is adding di�erential privacy noise, then the mechanism produces

M⃗ (x) = q⃗(0) + q⃗(1) + π⃗Fp

(
Z⃗
)

= q⃗∗ + π⃗Fp

(
Z⃗
)
, where Zj ← LapZ (GSf/ε) is

drawn independently for all 1 ≤ j ≤ d.

Theorem 4. M⃗ (x) = π⃗Fp
(f (x)) + π⃗Fp

(
Z⃗
)
, Zj ← LapZ (GSf/ε) satis�es ε-

di�erential privacy.

Proof. We will show De�nition 1 holds for singleton events, where E is a set of
cardinality one, then other events will follow by a union bound.

For neighboring datasets x and x′, let q⃗ = f (x), q⃗′ = f (x′), and q⃗∗ =
π⃗Fp

(f (x)), and let qj , q
∗
j , and Zj denote the j-th component of the respective

vectors. ThenMj (x) = q∗j +πFp (Zj). Applying the probability density function
of the discrete Laplace distribution, we have:

∀j ∈ [d] , yj ∈ Fp,P [Mj (x) = yj ] = P
[
πFp (Zj) = yj − q∗j

]
=

∞∑
k=−∞

P [Zj = πZ (yj)− qj + kp]

=

∞∑
k=−∞

e
ε/GSf − 1

e
ε/GSf + 1

exp

(
−ε |πZ (yj)− qj + kp|

GSf

)

=
e
ε/GSf − 1

e
ε/GSf + 1

∞∑
k=−∞

exp

(
−ε |πZ (yj)− qj + kp|

GSf

)
Since each Zj is drawn independently, the probability of the mechanism

returning some result can be found by taking the product of the probabilities
for each dimension of the result vector.

P
[
M⃗ (x) = y⃗

]
=

(
e
ε/GSf − 1

e
ε/GSf + 1

)d d∏
j=1

∞∑
k=−∞

exp

(
−ε |πZ (yj)− qj + kp|

GSf

)

P
[
M⃗ (x′) = y⃗

]
=

(
e
ε/GSf − 1

e
ε/GSf + 1

)d d∏
j=1

∞∑
k=−∞

exp

(
−ε
∣∣πZ (yj)− q′j + kp

∣∣
GSf

)
By the de�nition of global sensitivity, we know ∥q⃗ − q⃗′∥ℓ1 ≤ GSf . We can

break up the ℓ1 distance between q⃗ and q⃗′ by dimension, and relate this sum of

absolute values of di�erences to the product of multiplicative factors of e|qj−q
′
j|,

in order to get the bound we need. Let δj = qj − q′j . By the triangle inequality,∣∣πZ (yj)− q′j + kp
∣∣ ≤ |πZ (yj)− qj + kp|+ |δj |. Since ε > 0 and GSf > 0, then,

− ε

GSf

∣∣πZ (yj)− q′j + kp
∣∣ ≥ − ε

GSf
|πZ (yj)− qj + kp| − ε

GSf
|δj |
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exp

(
− ε

GSf

∣∣πZ (yj)− q′j + kp
∣∣) ≥ exp

(
− ε

GSf
|πZ (yj)− qj + kp| − ε |δj |

GSf

)
exp

(
− ε

GSf

∣∣πZ (yj)− q′j + kp
∣∣) ≥ exp

(
− ε

GSf
|πZ (yj)− qj + kp|

)
e
−

ε|δj |
GSf

e
ε|δj |
GSf exp

(
− ε

GSf

∣∣πZ (yj)− q′j + kp
∣∣) ≥ exp

(
− ε

GSf
|πZ (yj)− qj + kp|

)
exp

(
− ε

GSf
|πZ (yj)− qj + kp|

)
≤ e

ε|δj |
GSf exp

(
− ε

GSf

∣∣πZ (yj)− q′j + kp
∣∣)

Since the above holds for a �xed y, q and q′, and any j and k, we can �rst add
and then multiply inequalities together.

∞∑
k=−∞

exp

(
− ε

GSf
|πZ (yj)− qj + kp|

)
≤

e
ε|δj |
GSf

∞∑
k=−∞

exp

(
− ε

GSf

∣∣πZ (yj)− q′j + kp
∣∣)

d∏
j=1

∞∑
k=−∞

exp

(
− ε

GSf
|πZ (yj)− qj + kp|

)
≤

d∏
j=1

e
ε|δj |
GSf

∞∑
k=−∞

exp

(
− ε

GSf

∣∣πZ (yj)− q′j + kp
∣∣)

d∏
j=1

∞∑
k=−∞

exp

(
− ε

GSf
|πZ (yj)− qj + kp|

)
≤

exp


ε

d∑
j=1

|δj |

GSf


d∏

j=1

∞∑
k=−∞

exp

(
− ε

GSf

∣∣πZ (yj)− q′j + kp
∣∣)

d∏
j=1

∞∑
k=−∞

exp

(
− ε

GSf
|πZ (yj)− qj + kp|

)
≤

exp

(
ε

GSf
∥q⃗ − q⃗′∥ℓ1

) d∏
j=1

∞∑
k=−∞

exp

(
− ε

GSf

∣∣πZ (yj)− q′j + kp
∣∣)
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Then, since ∥q⃗ − q⃗′∥ℓ1 ≤ GSf ,

d∏
j=1

∞∑
k=−∞

exp

(
− ε

GSf
|πZ (yj)− qj + kp|

)
≤

e
ε

GSf
GSf

d∏
j=1

∞∑
k=−∞

exp

(
− ε

GSf

∣∣πZ (yj)− q′j + kp
∣∣)

d∏
j=1

∞∑
k=−∞

exp

(
− ε

GSf
|πZ (yj)− qj + kp|

)
≤

eε
d∏

j=1

∞∑
k=−∞

exp

(
− ε

GSf

∣∣πZ (yj)− q′j + kp
∣∣)

This shows that, for any neighboring x and x′, and any y, P
[
M⃗ (x) = y⃗

]
≤

eε · P
[
M⃗ (x′) = y⃗

]
.

Next, we apply union bounds. For any event E ⊆ Y, we decompose the
probabilities into that of the corresponding singleton events. (note that the
singleton events are mutually exclusive)

P
[
M⃗ (x) ∈ E

]
= P

M⃗ (x) ∈
⋃

y⃗i∈E

y⃗i

 =
∑
y⃗i∈E

P
[
M⃗ (x) = y⃗i

]

P
[
M⃗ (x′) ∈ E

]
= P

M⃗ (x′) ∈
⋃

y⃗i∈E

y⃗i

 =
∑
y⃗i∈E

P
[
M⃗ (x′) = y⃗i

]
Since we already know P

[
M⃗ (x) = y⃗

]
≤ eε ·P

[
M⃗ (x′) = y⃗

]
for all y⃗, we can add

multiple such inequalities together.∑
y⃗i∈E

P
[
M⃗ (x) = y⃗i

]
≤
∑
y⃗i∈E

eε · P
[
M⃗ (x′) = y⃗i

]
∑
y⃗i∈E

P
[
M⃗ (x) = y⃗i

]
≤ eε

∑
y⃗i∈E

P
[
M⃗ (x′) = y⃗i

]
P
[
M⃗ (x) ∈ E

]
≤ eε · P

[
M⃗ (x′) ∈ E

]
Therefore, M⃗ (x) satis�es ε-di�erential privacy.

We will now apply this mechanism to Prio3Histogram and Prio3SumVec in
turn.
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First, let the length parameter of Prio3Histogram be denoted by l. Then,
each measurement making up a dataset is an element of X = {0, 1, 2, . . . , l − 1},
and the query result is a vector of counts, in Y = Zl

≥0. The VDAF's aggregation
function is our query function, f (x). It maps each measurement to a one-hot
vector, with the position of the one determined by the measurement, and adds
them up. The global sensitivity of this query function is GSf = 2. When one
measurement in a dataset is replaced with another, then either the result is
unchanged, or one count is decreased by one and another is increased by one.
Thus, the scale parameter is t = 2/ε, and the mechanism will add noise drawn
independently from LapZ (2/ε) to each counter in both aggregate shares.

Let the length parameter of Prio3SumVec be denoted by l, and the bits

parameter be denoted by b. Each measurement making up a dataset is an

element of X =
{
0, 1, 2, . . . , 2b − 1

}l
. The query result is a vector of sums, in

Y = Zl
≥0. The VDAF's aggregation function is our query function, f (x) =

n∑
i=1

xi. The global sensitivity of this query function is GSf =
(
2b − 1

)
· l, because

substituting one measurement may increase or decrease each component of the

vector sum by up to 2b − 1. Thus, the scale parameter is t =
(2b−1)l

ε , and the

mechanism will add noise drawn independently from LapZ

(
(2b−1)l

ε

)
to each

sum in both aggregate shares.
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