// Copyright 2018 The Abseil Authors. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // https://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // // An open-addressing // hashtable with quadratic probing. // // This is a low level hashtable on top of which different interfaces can be // implemented, like flat_hash_set, node_hash_set, string_hash_set, etc. // // The table interface is similar to that of std::unordered_set. Notable // differences are that most member functions support heterogeneous keys when // BOTH the hash and eq functions are marked as transparent. They do so by // providing a typedef called `is_transparent`. // // When heterogeneous lookup is enabled, functions that take key_type act as if // they have an overload set like: // // iterator find(const key_type& key); // template // iterator find(const K& key); // // size_type erase(const key_type& key); // template // size_type erase(const K& key); // // std::pair equal_range(const key_type& key); // template // std::pair equal_range(const K& key); // // When heterogeneous lookup is disabled, only the explicit `key_type` overloads // exist. // // find() also supports passing the hash explicitly: // // iterator find(const key_type& key, size_t hash); // template // iterator find(const U& key, size_t hash); // // In addition the pointer to element and iterator stability guarantees are // weaker: all iterators and pointers are invalidated after a new element is // inserted. // // IMPLEMENTATION DETAILS // // # Table Layout // // A raw_hash_set's backing array consists of control bytes followed by slots // that may or may not contain objects. // // The layout of the backing array, for `capacity` slots, is thus, as a // pseudo-struct: // // struct BackingArray { // // Sampling handler. This field isn't present when the sampling is // // disabled or this allocation hasn't been selected for sampling. // HashtablezInfoHandle infoz_; // // The number of elements we can insert before growing the capacity. // size_t growth_left; // // Control bytes for the "real" slots. // ctrl_t ctrl[capacity]; // // Always `ctrl_t::kSentinel`. This is used by iterators to find when to // // stop and serves no other purpose. // ctrl_t sentinel; // // A copy of the first `kWidth - 1` elements of `ctrl`. This is used so // // that if a probe sequence picks a value near the end of `ctrl`, // // `Group` will have valid control bytes to look at. // ctrl_t clones[kWidth - 1]; // // The actual slot data. // slot_type slots[capacity]; // }; // // The length of this array is computed by `RawHashSetLayout::alloc_size` below. // // Control bytes (`ctrl_t`) are bytes (collected into groups of a // platform-specific size) that define the state of the corresponding slot in // the slot array. Group manipulation is tightly optimized to be as efficient // as possible: SSE and friends on x86, clever bit operations on other arches. // // Group 1 Group 2 Group 3 // +---------------+---------------+---------------+ // | | | | | | | | | | | | | | | | | | | | | | | | | // +---------------+---------------+---------------+ // // Each control byte is either a special value for empty slots, deleted slots // (sometimes called *tombstones*), and a special end-of-table marker used by // iterators, or, if occupied, seven bits (H2) from the hash of the value in the // corresponding slot. // // Storing control bytes in a separate array also has beneficial cache effects, // since more logical slots will fit into a cache line. // // # Small Object Optimization (SOO) // // When the size/alignment of the value_type and the capacity of the table are // small, we enable small object optimization and store the values inline in // the raw_hash_set object. This optimization allows us to avoid // allocation/deallocation as well as cache/dTLB misses. // // # Hashing // // We compute two separate hashes, `H1` and `H2`, from the hash of an object. // `H1(hash(x))` is an index into `slots`, and essentially the starting point // for the probe sequence. `H2(hash(x))` is a 7-bit value used to filter out // objects that cannot possibly be the one we are looking for. // // # Table operations. // // The key operations are `insert`, `find`, and `erase`. // // Since `insert` and `erase` are implemented in terms of `find`, we describe // `find` first. To `find` a value `x`, we compute `hash(x)`. From // `H1(hash(x))` and the capacity, we construct a `probe_seq` that visits every // group of slots in some interesting order. // // We now walk through these indices. At each index, we select the entire group // starting with that index and extract potential candidates: occupied slots // with a control byte equal to `H2(hash(x))`. If we find an empty slot in the // group, we stop and return an error. Each candidate slot `y` is compared with // `x`; if `x == y`, we are done and return `&y`; otherwise we continue to the // next probe index. Tombstones effectively behave like full slots that never // match the value we're looking for. // // The `H2` bits ensure when we compare a slot to an object with `==`, we are // likely to have actually found the object. That is, the chance is low that // `==` is called and returns `false`. Thus, when we search for an object, we // are unlikely to call `==` many times. This likelyhood can be analyzed as // follows (assuming that H2 is a random enough hash function). // // Let's assume that there are `k` "wrong" objects that must be examined in a // probe sequence. For example, when doing a `find` on an object that is in the // table, `k` is the number of objects between the start of the probe sequence // and the final found object (not including the final found object). The // expected number of objects with an H2 match is then `k/128`. Measurements // and analysis indicate that even at high load factors, `k` is less than 32, // meaning that the number of "false positive" comparisons we must perform is // less than 1/8 per `find`. // `insert` is implemented in terms of `unchecked_insert`, which inserts a // value presumed to not be in the table (violating this requirement will cause // the table to behave erratically). Given `x` and its hash `hash(x)`, to insert // it, we construct a `probe_seq` once again, and use it to find the first // group with an unoccupied (empty *or* deleted) slot. We place `x` into the // first such slot in the group and mark it as full with `x`'s H2. // // To `insert`, we compose `unchecked_insert` with `find`. We compute `h(x)` and // perform a `find` to see if it's already present; if it is, we're done. If // it's not, we may decide the table is getting overcrowded (i.e. the load // factor is greater than 7/8 for big tables; `is_small()` tables use a max load // factor of 1); in this case, we allocate a bigger array, `unchecked_insert` // each element of the table into the new array (we know that no insertion here // will insert an already-present value), and discard the old backing array. At // this point, we may `unchecked_insert` the value `x`. // // Below, `unchecked_insert` is partly implemented by `prepare_insert`, which // presents a viable, initialized slot pointee to the caller. // // `erase` is implemented in terms of `erase_at`, which takes an index to a // slot. Given an offset, we simply create a tombstone and destroy its contents. // If we can prove that the slot would not appear in a probe sequence, we can // make the slot as empty, instead. We can prove this by observing that if a // group has any empty slots, it has never been full (assuming we never create // an empty slot in a group with no empties, which this heuristic guarantees we // never do) and find would stop at this group anyways (since it does not probe // beyond groups with empties). // // `erase` is `erase_at` composed with `find`: if we // have a value `x`, we can perform a `find`, and then `erase_at` the resulting // slot. // // To iterate, we simply traverse the array, skipping empty and deleted slots // and stopping when we hit a `kSentinel`. #ifndef ABSL_CONTAINER_INTERNAL_RAW_HASH_SET_H_ #define ABSL_CONTAINER_INTERNAL_RAW_HASH_SET_H_ #include #include #include #include #include #include #include #include #include #include #include #include #include #include "absl/base/attributes.h" #include "absl/base/config.h" #include "absl/base/internal/endian.h" #include "absl/base/internal/raw_logging.h" #include "absl/base/macros.h" #include "absl/base/optimization.h" #include "absl/base/options.h" #include "absl/base/port.h" #include "absl/base/prefetch.h" #include "absl/container/internal/common.h" // IWYU pragma: export // for node_handle #include "absl/container/internal/compressed_tuple.h" #include "absl/container/internal/container_memory.h" #include "absl/container/internal/hash_policy_traits.h" #include "absl/container/internal/hashtable_debug_hooks.h" #include "absl/container/internal/hashtablez_sampler.h" #include "absl/memory/memory.h" #include "absl/meta/type_traits.h" #include "absl/numeric/bits.h" #include "absl/utility/utility.h" #ifdef ABSL_INTERNAL_HAVE_SSE2 #include #endif #ifdef ABSL_INTERNAL_HAVE_SSSE3 #include #endif #ifdef _MSC_VER #include #endif #ifdef ABSL_INTERNAL_HAVE_ARM_NEON #include #endif namespace absl { ABSL_NAMESPACE_BEGIN namespace container_internal { #ifdef ABSL_SWISSTABLE_ENABLE_GENERATIONS #error ABSL_SWISSTABLE_ENABLE_GENERATIONS cannot be directly set #elif (defined(ABSL_HAVE_ADDRESS_SANITIZER) || \ defined(ABSL_HAVE_HWADDRESS_SANITIZER) || \ defined(ABSL_HAVE_MEMORY_SANITIZER)) && \ !defined(NDEBUG_SANITIZER) // If defined, performance is important. // When compiled in sanitizer mode, we add generation integers to the backing // array and iterators. In the backing array, we store the generation between // the control bytes and the slots. When iterators are dereferenced, we assert // that the container has not been mutated in a way that could cause iterator // invalidation since the iterator was initialized. #define ABSL_SWISSTABLE_ENABLE_GENERATIONS #endif // We use uint8_t so we don't need to worry about padding. using GenerationType = uint8_t; // A sentinel value for empty generations. Using 0 makes it easy to constexpr // initialize an array of this value. constexpr GenerationType SentinelEmptyGeneration() { return 0; } constexpr GenerationType NextGeneration(GenerationType generation) { return ++generation == SentinelEmptyGeneration() ? ++generation : generation; } #ifdef ABSL_SWISSTABLE_ENABLE_GENERATIONS constexpr bool SwisstableGenerationsEnabled() { return true; } constexpr size_t NumGenerationBytes() { return sizeof(GenerationType); } #else constexpr bool SwisstableGenerationsEnabled() { return false; } constexpr size_t NumGenerationBytes() { return 0; } #endif template void SwapAlloc(AllocType& lhs, AllocType& rhs, std::true_type /* propagate_on_container_swap */) { using std::swap; swap(lhs, rhs); } template void SwapAlloc(AllocType& lhs, AllocType& rhs, std::false_type /* propagate_on_container_swap */) { (void)lhs; (void)rhs; assert(lhs == rhs && "It's UB to call swap with unequal non-propagating allocators."); } template void CopyAlloc(AllocType& lhs, AllocType& rhs, std::true_type /* propagate_alloc */) { lhs = rhs; } template void CopyAlloc(AllocType&, AllocType&, std::false_type /* propagate_alloc */) {} // The state for a probe sequence. // // Currently, the sequence is a triangular progression of the form // // p(i) := Width * (i^2 + i)/2 + hash (mod mask + 1) // // The use of `Width` ensures that each probe step does not overlap groups; // the sequence effectively outputs the addresses of *groups* (although not // necessarily aligned to any boundary). The `Group` machinery allows us // to check an entire group with minimal branching. // // Wrapping around at `mask + 1` is important, but not for the obvious reason. // As described above, the first few entries of the control byte array // are mirrored at the end of the array, which `Group` will find and use // for selecting candidates. However, when those candidates' slots are // actually inspected, there are no corresponding slots for the cloned bytes, // so we need to make sure we've treated those offsets as "wrapping around". // // It turns out that this probe sequence visits every group exactly once if the // number of groups is a power of two, since (i^2+i)/2 is a bijection in // Z/(2^m). See https://en.wikipedia.org/wiki/Quadratic_probing template class probe_seq { public: // Creates a new probe sequence using `hash` as the initial value of the // sequence and `mask` (usually the capacity of the table) as the mask to // apply to each value in the progression. probe_seq(size_t hash, size_t mask) { assert(((mask + 1) & mask) == 0 && "not a mask"); mask_ = mask; offset_ = hash & mask_; } // The offset within the table, i.e., the value `p(i)` above. size_t offset() const { return offset_; } size_t offset(size_t i) const { return (offset_ + i) & mask_; } void next() { index_ += Width; offset_ += index_; offset_ &= mask_; } // 0-based probe index, a multiple of `Width`. size_t index() const { return index_; } private: size_t mask_; size_t offset_; size_t index_ = 0; }; template struct RequireUsableKey { template std::pair< decltype(std::declval()(std::declval())), decltype(std::declval()(std::declval(), std::declval()))>* operator()(const PassedKey&, const Args&...) const; }; template struct IsDecomposable : std::false_type {}; template struct IsDecomposable< absl::void_t(), std::declval()...))>, Policy, Hash, Eq, Ts...> : std::true_type {}; // TODO(alkis): Switch to std::is_nothrow_swappable when gcc/clang supports it. template constexpr bool IsNoThrowSwappable(std::true_type = {} /* is_swappable */) { using std::swap; return noexcept(swap(std::declval(), std::declval())); } template constexpr bool IsNoThrowSwappable(std::false_type /* is_swappable */) { return false; } template uint32_t TrailingZeros(T x) { ABSL_ASSUME(x != 0); return static_cast(countr_zero(x)); } // 8 bytes bitmask with most significant bit set for every byte. constexpr uint64_t kMsbs8Bytes = 0x8080808080808080ULL; // An abstract bitmask, such as that emitted by a SIMD instruction. // // Specifically, this type implements a simple bitset whose representation is // controlled by `SignificantBits` and `Shift`. `SignificantBits` is the number // of abstract bits in the bitset, while `Shift` is the log-base-two of the // width of an abstract bit in the representation. // This mask provides operations for any number of real bits set in an abstract // bit. To add iteration on top of that, implementation must guarantee no more // than the most significant real bit is set in a set abstract bit. template class NonIterableBitMask { public: explicit NonIterableBitMask(T mask) : mask_(mask) {} explicit operator bool() const { return this->mask_ != 0; } // Returns the index of the lowest *abstract* bit set in `self`. uint32_t LowestBitSet() const { return container_internal::TrailingZeros(mask_) >> Shift; } // Returns the index of the highest *abstract* bit set in `self`. uint32_t HighestBitSet() const { return static_cast((bit_width(mask_) - 1) >> Shift); } // Returns the number of trailing zero *abstract* bits. uint32_t TrailingZeros() const { return container_internal::TrailingZeros(mask_) >> Shift; } // Returns the number of leading zero *abstract* bits. uint32_t LeadingZeros() const { constexpr int total_significant_bits = SignificantBits << Shift; constexpr int extra_bits = sizeof(T) * 8 - total_significant_bits; return static_cast( countl_zero(static_cast(mask_ << extra_bits))) >> Shift; } T mask_; }; // Mask that can be iterable // // For example, when `SignificantBits` is 16 and `Shift` is zero, this is just // an ordinary 16-bit bitset occupying the low 16 bits of `mask`. When // `SignificantBits` is 8 and `Shift` is 3, abstract bits are represented as // the bytes `0x00` and `0x80`, and it occupies all 64 bits of the bitmask. // If NullifyBitsOnIteration is true (only allowed for Shift == 3), // non zero abstract bit is allowed to have additional bits // (e.g., `0xff`, `0x83` and `0x9c` are ok, but `0x6f` is not). // // For example: // for (int i : BitMask(0b101)) -> yields 0, 2 // for (int i : BitMask(0x0000000080800000)) -> yields 2, 3 template class BitMask : public NonIterableBitMask { using Base = NonIterableBitMask; static_assert(std::is_unsigned::value, ""); static_assert(Shift == 0 || Shift == 3, ""); static_assert(!NullifyBitsOnIteration || Shift == 3, ""); public: explicit BitMask(T mask) : Base(mask) { if (Shift == 3 && !NullifyBitsOnIteration) { assert(this->mask_ == (this->mask_ & kMsbs8Bytes)); } } // BitMask is an iterator over the indices of its abstract bits. using value_type = int; using iterator = BitMask; using const_iterator = BitMask; BitMask& operator++() { if (Shift == 3 && NullifyBitsOnIteration) { this->mask_ &= kMsbs8Bytes; } this->mask_ &= (this->mask_ - 1); return *this; } uint32_t operator*() const { return Base::LowestBitSet(); } BitMask begin() const { return *this; } BitMask end() const { return BitMask(0); } private: friend bool operator==(const BitMask& a, const BitMask& b) { return a.mask_ == b.mask_; } friend bool operator!=(const BitMask& a, const BitMask& b) { return a.mask_ != b.mask_; } }; using h2_t = uint8_t; // The values here are selected for maximum performance. See the static asserts // below for details. // A `ctrl_t` is a single control byte, which can have one of four // states: empty, deleted, full (which has an associated seven-bit h2_t value) // and the sentinel. They have the following bit patterns: // // empty: 1 0 0 0 0 0 0 0 // deleted: 1 1 1 1 1 1 1 0 // full: 0 h h h h h h h // h represents the hash bits. // sentinel: 1 1 1 1 1 1 1 1 // // These values are specifically tuned for SSE-flavored SIMD. // The static_asserts below detail the source of these choices. // // We use an enum class so that when strict aliasing is enabled, the compiler // knows ctrl_t doesn't alias other types. enum class ctrl_t : int8_t { kEmpty = -128, // 0b10000000 kDeleted = -2, // 0b11111110 kSentinel = -1, // 0b11111111 }; static_assert( (static_cast(ctrl_t::kEmpty) & static_cast(ctrl_t::kDeleted) & static_cast(ctrl_t::kSentinel) & 0x80) != 0, "Special markers need to have the MSB to make checking for them efficient"); static_assert( ctrl_t::kEmpty < ctrl_t::kSentinel && ctrl_t::kDeleted < ctrl_t::kSentinel, "ctrl_t::kEmpty and ctrl_t::kDeleted must be smaller than " "ctrl_t::kSentinel to make the SIMD test of IsEmptyOrDeleted() efficient"); static_assert( ctrl_t::kSentinel == static_cast(-1), "ctrl_t::kSentinel must be -1 to elide loading it from memory into SIMD " "registers (pcmpeqd xmm, xmm)"); static_assert(ctrl_t::kEmpty == static_cast(-128), "ctrl_t::kEmpty must be -128 to make the SIMD check for its " "existence efficient (psignb xmm, xmm)"); static_assert( (~static_cast(ctrl_t::kEmpty) & ~static_cast(ctrl_t::kDeleted) & static_cast(ctrl_t::kSentinel) & 0x7F) != 0, "ctrl_t::kEmpty and ctrl_t::kDeleted must share an unset bit that is not " "shared by ctrl_t::kSentinel to make the scalar test for " "MaskEmptyOrDeleted() efficient"); static_assert(ctrl_t::kDeleted == static_cast(-2), "ctrl_t::kDeleted must be -2 to make the implementation of " "ConvertSpecialToEmptyAndFullToDeleted efficient"); // See definition comment for why this is size 32. ABSL_DLL extern const ctrl_t kEmptyGroup[32]; // Returns a pointer to a control byte group that can be used by empty tables. inline ctrl_t* EmptyGroup() { // Const must be cast away here; no uses of this function will actually write // to it because it is only used for empty tables. return const_cast(kEmptyGroup + 16); } // For use in SOO iterators. // TODO(b/289225379): we could potentially get rid of this by adding an is_soo // bit in iterators. This would add branches but reduce cache misses. ABSL_DLL extern const ctrl_t kSooControl[17]; // Returns a pointer to a full byte followed by a sentinel byte. inline ctrl_t* SooControl() { // Const must be cast away here; no uses of this function will actually write // to it because it is only used for SOO iterators. return const_cast(kSooControl); } // Whether ctrl is from the SooControl array. inline bool IsSooControl(const ctrl_t* ctrl) { return ctrl == SooControl(); } // Returns a pointer to a generation to use for an empty hashtable. GenerationType* EmptyGeneration(); // Returns whether `generation` is a generation for an empty hashtable that // could be returned by EmptyGeneration(). inline bool IsEmptyGeneration(const GenerationType* generation) { return *generation == SentinelEmptyGeneration(); } // Mixes a randomly generated per-process seed with `hash` and `ctrl` to // randomize insertion order within groups. bool ShouldInsertBackwardsForDebug(size_t capacity, size_t hash, const ctrl_t* ctrl); ABSL_ATTRIBUTE_ALWAYS_INLINE inline bool ShouldInsertBackwards( ABSL_ATTRIBUTE_UNUSED size_t capacity, ABSL_ATTRIBUTE_UNUSED size_t hash, ABSL_ATTRIBUTE_UNUSED const ctrl_t* ctrl) { #if defined(NDEBUG) return false; #else return ShouldInsertBackwardsForDebug(capacity, hash, ctrl); #endif } // Returns insert position for the given mask. // We want to add entropy even when ASLR is not enabled. // In debug build we will randomly insert in either the front or back of // the group. // TODO(kfm,sbenza): revisit after we do unconditional mixing template ABSL_ATTRIBUTE_ALWAYS_INLINE inline auto GetInsertionOffset( Mask mask, ABSL_ATTRIBUTE_UNUSED size_t capacity, ABSL_ATTRIBUTE_UNUSED size_t hash, ABSL_ATTRIBUTE_UNUSED const ctrl_t* ctrl) { #if defined(NDEBUG) return mask.LowestBitSet(); #else return ShouldInsertBackwardsForDebug(capacity, hash, ctrl) ? mask.HighestBitSet() : mask.LowestBitSet(); #endif } // Returns a per-table, hash salt, which changes on resize. This gets mixed into // H1 to randomize iteration order per-table. // // The seed consists of the ctrl_ pointer, which adds enough entropy to ensure // non-determinism of iteration order in most cases. inline size_t PerTableSalt(const ctrl_t* ctrl) { // The low bits of the pointer have little or no entropy because of // alignment. We shift the pointer to try to use higher entropy bits. A // good number seems to be 12 bits, because that aligns with page size. return reinterpret_cast(ctrl) >> 12; } // Extracts the H1 portion of a hash: 57 bits mixed with a per-table salt. inline size_t H1(size_t hash, const ctrl_t* ctrl) { return (hash >> 7) ^ PerTableSalt(ctrl); } // Extracts the H2 portion of a hash: the 7 bits not used for H1. // // These are used as an occupied control byte. inline h2_t H2(size_t hash) { return hash & 0x7F; } // Helpers for checking the state of a control byte. inline bool IsEmpty(ctrl_t c) { return c == ctrl_t::kEmpty; } inline bool IsFull(ctrl_t c) { // Cast `c` to the underlying type instead of casting `0` to `ctrl_t` as `0` // is not a value in the enum. Both ways are equivalent, but this way makes // linters happier. return static_cast>(c) >= 0; } inline bool IsDeleted(ctrl_t c) { return c == ctrl_t::kDeleted; } inline bool IsEmptyOrDeleted(ctrl_t c) { return c < ctrl_t::kSentinel; } #ifdef ABSL_INTERNAL_HAVE_SSE2 // Quick reference guide for intrinsics used below: // // * __m128i: An XMM (128-bit) word. // // * _mm_setzero_si128: Returns a zero vector. // * _mm_set1_epi8: Returns a vector with the same i8 in each lane. // // * _mm_subs_epi8: Saturating-subtracts two i8 vectors. // * _mm_and_si128: Ands two i128s together. // * _mm_or_si128: Ors two i128s together. // * _mm_andnot_si128: And-nots two i128s together. // // * _mm_cmpeq_epi8: Component-wise compares two i8 vectors for equality, // filling each lane with 0x00 or 0xff. // * _mm_cmpgt_epi8: Same as above, but using > rather than ==. // // * _mm_loadu_si128: Performs an unaligned load of an i128. // * _mm_storeu_si128: Performs an unaligned store of an i128. // // * _mm_sign_epi8: Retains, negates, or zeroes each i8 lane of the first // argument if the corresponding lane of the second // argument is positive, negative, or zero, respectively. // * _mm_movemask_epi8: Selects the sign bit out of each i8 lane and produces a // bitmask consisting of those bits. // * _mm_shuffle_epi8: Selects i8s from the first argument, using the low // four bits of each i8 lane in the second argument as // indices. // https://github.com/abseil/abseil-cpp/issues/209 // https://gcc.gnu.org/bugzilla/show_bug.cgi?id=87853 // _mm_cmpgt_epi8 is broken under GCC with -funsigned-char // Work around this by using the portable implementation of Group // when using -funsigned-char under GCC. inline __m128i _mm_cmpgt_epi8_fixed(__m128i a, __m128i b) { #if defined(__GNUC__) && !defined(__clang__) if (std::is_unsigned::value) { const __m128i mask = _mm_set1_epi8(0x80); const __m128i diff = _mm_subs_epi8(b, a); return _mm_cmpeq_epi8(_mm_and_si128(diff, mask), mask); } #endif return _mm_cmpgt_epi8(a, b); } struct GroupSse2Impl { static constexpr size_t kWidth = 16; // the number of slots per group explicit GroupSse2Impl(const ctrl_t* pos) { ctrl = _mm_loadu_si128(reinterpret_cast(pos)); } // Returns a bitmask representing the positions of slots that match hash. BitMask Match(h2_t hash) const { auto match = _mm_set1_epi8(static_cast(hash)); BitMask result = BitMask(0); result = BitMask( static_cast(_mm_movemask_epi8(_mm_cmpeq_epi8(match, ctrl)))); return result; } // Returns a bitmask representing the positions of empty slots. NonIterableBitMask MaskEmpty() const { #ifdef ABSL_INTERNAL_HAVE_SSSE3 // This only works because ctrl_t::kEmpty is -128. return NonIterableBitMask( static_cast(_mm_movemask_epi8(_mm_sign_epi8(ctrl, ctrl)))); #else auto match = _mm_set1_epi8(static_cast(ctrl_t::kEmpty)); return NonIterableBitMask( static_cast(_mm_movemask_epi8(_mm_cmpeq_epi8(match, ctrl)))); #endif } // Returns a bitmask representing the positions of full slots. // Note: for `is_small()` tables group may contain the "same" slot twice: // original and mirrored. BitMask MaskFull() const { return BitMask( static_cast(_mm_movemask_epi8(ctrl) ^ 0xffff)); } // Returns a bitmask representing the positions of non full slots. // Note: this includes: kEmpty, kDeleted, kSentinel. // It is useful in contexts when kSentinel is not present. auto MaskNonFull() const { return BitMask( static_cast(_mm_movemask_epi8(ctrl))); } // Returns a bitmask representing the positions of empty or deleted slots. NonIterableBitMask MaskEmptyOrDeleted() const { auto special = _mm_set1_epi8(static_cast(ctrl_t::kSentinel)); return NonIterableBitMask(static_cast( _mm_movemask_epi8(_mm_cmpgt_epi8_fixed(special, ctrl)))); } // Returns the number of trailing empty or deleted elements in the group. uint32_t CountLeadingEmptyOrDeleted() const { auto special = _mm_set1_epi8(static_cast(ctrl_t::kSentinel)); return TrailingZeros(static_cast( _mm_movemask_epi8(_mm_cmpgt_epi8_fixed(special, ctrl)) + 1)); } void ConvertSpecialToEmptyAndFullToDeleted(ctrl_t* dst) const { auto msbs = _mm_set1_epi8(static_cast(-128)); auto x126 = _mm_set1_epi8(126); #ifdef ABSL_INTERNAL_HAVE_SSSE3 auto res = _mm_or_si128(_mm_shuffle_epi8(x126, ctrl), msbs); #else auto zero = _mm_setzero_si128(); auto special_mask = _mm_cmpgt_epi8_fixed(zero, ctrl); auto res = _mm_or_si128(msbs, _mm_andnot_si128(special_mask, x126)); #endif _mm_storeu_si128(reinterpret_cast<__m128i*>(dst), res); } __m128i ctrl; }; #endif // ABSL_INTERNAL_RAW_HASH_SET_HAVE_SSE2 #if defined(ABSL_INTERNAL_HAVE_ARM_NEON) && defined(ABSL_IS_LITTLE_ENDIAN) struct GroupAArch64Impl { static constexpr size_t kWidth = 8; explicit GroupAArch64Impl(const ctrl_t* pos) { ctrl = vld1_u8(reinterpret_cast(pos)); } auto Match(h2_t hash) const { uint8x8_t dup = vdup_n_u8(hash); auto mask = vceq_u8(ctrl, dup); return BitMask( vget_lane_u64(vreinterpret_u64_u8(mask), 0)); } NonIterableBitMask MaskEmpty() const { uint64_t mask = vget_lane_u64(vreinterpret_u64_u8(vceq_s8( vdup_n_s8(static_cast(ctrl_t::kEmpty)), vreinterpret_s8_u8(ctrl))), 0); return NonIterableBitMask(mask); } // Returns a bitmask representing the positions of full slots. // Note: for `is_small()` tables group may contain the "same" slot twice: // original and mirrored. auto MaskFull() const { uint64_t mask = vget_lane_u64( vreinterpret_u64_u8(vcge_s8(vreinterpret_s8_u8(ctrl), vdup_n_s8(static_cast(0)))), 0); return BitMask(mask); } // Returns a bitmask representing the positions of non full slots. // Note: this includes: kEmpty, kDeleted, kSentinel. // It is useful in contexts when kSentinel is not present. auto MaskNonFull() const { uint64_t mask = vget_lane_u64( vreinterpret_u64_u8(vclt_s8(vreinterpret_s8_u8(ctrl), vdup_n_s8(static_cast(0)))), 0); return BitMask(mask); } NonIterableBitMask MaskEmptyOrDeleted() const { uint64_t mask = vget_lane_u64(vreinterpret_u64_u8(vcgt_s8( vdup_n_s8(static_cast(ctrl_t::kSentinel)), vreinterpret_s8_u8(ctrl))), 0); return NonIterableBitMask(mask); } uint32_t CountLeadingEmptyOrDeleted() const { uint64_t mask = vget_lane_u64(vreinterpret_u64_u8(vcle_s8( vdup_n_s8(static_cast(ctrl_t::kSentinel)), vreinterpret_s8_u8(ctrl))), 0); // Similar to MaskEmptyorDeleted() but we invert the logic to invert the // produced bitfield. We then count number of trailing zeros. // Clang and GCC optimize countr_zero to rbit+clz without any check for 0, // so we should be fine. return static_cast(countr_zero(mask)) >> 3; } void ConvertSpecialToEmptyAndFullToDeleted(ctrl_t* dst) const { uint64_t mask = vget_lane_u64(vreinterpret_u64_u8(ctrl), 0); constexpr uint64_t slsbs = 0x0202020202020202ULL; constexpr uint64_t midbs = 0x7e7e7e7e7e7e7e7eULL; auto x = slsbs & (mask >> 6); auto res = (x + midbs) | kMsbs8Bytes; little_endian::Store64(dst, res); } uint8x8_t ctrl; }; #endif // ABSL_INTERNAL_HAVE_ARM_NEON && ABSL_IS_LITTLE_ENDIAN struct GroupPortableImpl { static constexpr size_t kWidth = 8; explicit GroupPortableImpl(const ctrl_t* pos) : ctrl(little_endian::Load64(pos)) {} BitMask Match(h2_t hash) const { // For the technique, see: // http://graphics.stanford.edu/~seander/bithacks.html##ValueInWord // (Determine if a word has a byte equal to n). // // Caveat: there are false positives but: // - they only occur if there is a real match // - they never occur on ctrl_t::kEmpty, ctrl_t::kDeleted, ctrl_t::kSentinel // - they will be handled gracefully by subsequent checks in code // // Example: // v = 0x1716151413121110 // hash = 0x12 // retval = (v - lsbs) & ~v & msbs = 0x0000000080800000 constexpr uint64_t lsbs = 0x0101010101010101ULL; auto x = ctrl ^ (lsbs * hash); return BitMask((x - lsbs) & ~x & kMsbs8Bytes); } NonIterableBitMask MaskEmpty() const { return NonIterableBitMask((ctrl & ~(ctrl << 6)) & kMsbs8Bytes); } // Returns a bitmask representing the positions of full slots. // Note: for `is_small()` tables group may contain the "same" slot twice: // original and mirrored. BitMask MaskFull() const { return BitMask((ctrl ^ kMsbs8Bytes) & kMsbs8Bytes); } // Returns a bitmask representing the positions of non full slots. // Note: this includes: kEmpty, kDeleted, kSentinel. // It is useful in contexts when kSentinel is not present. auto MaskNonFull() const { return BitMask(ctrl & kMsbs8Bytes); } NonIterableBitMask MaskEmptyOrDeleted() const { return NonIterableBitMask((ctrl & ~(ctrl << 7)) & kMsbs8Bytes); } uint32_t CountLeadingEmptyOrDeleted() const { // ctrl | ~(ctrl >> 7) will have the lowest bit set to zero for kEmpty and // kDeleted. We lower all other bits and count number of trailing zeros. constexpr uint64_t bits = 0x0101010101010101ULL; return static_cast(countr_zero((ctrl | ~(ctrl >> 7)) & bits) >> 3); } void ConvertSpecialToEmptyAndFullToDeleted(ctrl_t* dst) const { constexpr uint64_t lsbs = 0x0101010101010101ULL; auto x = ctrl & kMsbs8Bytes; auto res = (~x + (x >> 7)) & ~lsbs; little_endian::Store64(dst, res); } uint64_t ctrl; }; #ifdef ABSL_INTERNAL_HAVE_SSE2 using Group = GroupSse2Impl; using GroupFullEmptyOrDeleted = GroupSse2Impl; #elif defined(ABSL_INTERNAL_HAVE_ARM_NEON) && defined(ABSL_IS_LITTLE_ENDIAN) using Group = GroupAArch64Impl; // For Aarch64, we use the portable implementation for counting and masking // full, empty or deleted group elements. This is to avoid the latency of moving // between data GPRs and Neon registers when it does not provide a benefit. // Using Neon is profitable when we call Match(), but is not when we don't, // which is the case when we do *EmptyOrDeleted and MaskFull operations. // It is difficult to make a similar approach beneficial on other architectures // such as x86 since they have much lower GPR <-> vector register transfer // latency and 16-wide Groups. using GroupFullEmptyOrDeleted = GroupPortableImpl; #else using Group = GroupPortableImpl; using GroupFullEmptyOrDeleted = GroupPortableImpl; #endif // When there is an insertion with no reserved growth, we rehash with // probability `min(1, RehashProbabilityConstant() / capacity())`. Using a // constant divided by capacity ensures that inserting N elements is still O(N) // in the average case. Using the constant 16 means that we expect to rehash ~8 // times more often than when generations are disabled. We are adding expected // rehash_probability * #insertions/capacity_growth = 16/capacity * ((7/8 - // 7/16) * capacity)/capacity_growth = ~7 extra rehashes per capacity growth. inline size_t RehashProbabilityConstant() { return 16; } class CommonFieldsGenerationInfoEnabled { // A sentinel value for reserved_growth_ indicating that we just ran out of // reserved growth on the last insertion. When reserve is called and then // insertions take place, reserved_growth_'s state machine is N, ..., 1, // kReservedGrowthJustRanOut, 0. static constexpr size_t kReservedGrowthJustRanOut = (std::numeric_limits::max)(); public: CommonFieldsGenerationInfoEnabled() = default; CommonFieldsGenerationInfoEnabled(CommonFieldsGenerationInfoEnabled&& that) : reserved_growth_(that.reserved_growth_), reservation_size_(that.reservation_size_), generation_(that.generation_) { that.reserved_growth_ = 0; that.reservation_size_ = 0; that.generation_ = EmptyGeneration(); } CommonFieldsGenerationInfoEnabled& operator=( CommonFieldsGenerationInfoEnabled&&) = default; // Whether we should rehash on insert in order to detect bugs of using invalid // references. We rehash on the first insertion after reserved_growth_ reaches // 0 after a call to reserve. We also do a rehash with low probability // whenever reserved_growth_ is zero. bool should_rehash_for_bug_detection_on_insert(const ctrl_t* ctrl, size_t capacity) const; // Similar to above, except that we don't depend on reserved_growth_. bool should_rehash_for_bug_detection_on_move(const ctrl_t* ctrl, size_t capacity) const; void maybe_increment_generation_on_insert() { if (reserved_growth_ == kReservedGrowthJustRanOut) reserved_growth_ = 0; if (reserved_growth_ > 0) { if (--reserved_growth_ == 0) reserved_growth_ = kReservedGrowthJustRanOut; } else { increment_generation(); } } void increment_generation() { *generation_ = NextGeneration(*generation_); } void reset_reserved_growth(size_t reservation, size_t size) { reserved_growth_ = reservation - size; } size_t reserved_growth() const { return reserved_growth_; } void set_reserved_growth(size_t r) { reserved_growth_ = r; } size_t reservation_size() const { return reservation_size_; } void set_reservation_size(size_t r) { reservation_size_ = r; } GenerationType generation() const { return *generation_; } void set_generation(GenerationType g) { *generation_ = g; } GenerationType* generation_ptr() const { return generation_; } void set_generation_ptr(GenerationType* g) { generation_ = g; } private: // The number of insertions remaining that are guaranteed to not rehash due to // a prior call to reserve. Note: we store reserved growth in addition to // reservation size because calls to erase() decrease size_ but don't decrease // reserved growth. size_t reserved_growth_ = 0; // The maximum argument to reserve() since the container was cleared. We need // to keep track of this, in addition to reserved growth, because we reset // reserved growth to this when erase(begin(), end()) is called. size_t reservation_size_ = 0; // Pointer to the generation counter, which is used to validate iterators and // is stored in the backing array between the control bytes and the slots. // Note that we can't store the generation inside the container itself and // keep a pointer to the container in the iterators because iterators must // remain valid when the container is moved. // Note: we could derive this pointer from the control pointer, but it makes // the code more complicated, and there's a benefit in having the sizes of // raw_hash_set in sanitizer mode and non-sanitizer mode a bit more different, // which is that tests are less likely to rely on the size remaining the same. GenerationType* generation_ = EmptyGeneration(); }; class CommonFieldsGenerationInfoDisabled { public: CommonFieldsGenerationInfoDisabled() = default; CommonFieldsGenerationInfoDisabled(CommonFieldsGenerationInfoDisabled&&) = default; CommonFieldsGenerationInfoDisabled& operator=( CommonFieldsGenerationInfoDisabled&&) = default; bool should_rehash_for_bug_detection_on_insert(const ctrl_t*, size_t) const { return false; } bool should_rehash_for_bug_detection_on_move(const ctrl_t*, size_t) const { return false; } void maybe_increment_generation_on_insert() {} void increment_generation() {} void reset_reserved_growth(size_t, size_t) {} size_t reserved_growth() const { return 0; } void set_reserved_growth(size_t) {} size_t reservation_size() const { return 0; } void set_reservation_size(size_t) {} GenerationType generation() const { return 0; } void set_generation(GenerationType) {} GenerationType* generation_ptr() const { return nullptr; } void set_generation_ptr(GenerationType*) {} }; class HashSetIteratorGenerationInfoEnabled { public: HashSetIteratorGenerationInfoEnabled() = default; explicit HashSetIteratorGenerationInfoEnabled( const GenerationType* generation_ptr) : generation_ptr_(generation_ptr), generation_(*generation_ptr) {} GenerationType generation() const { return generation_; } void reset_generation() { generation_ = *generation_ptr_; } const GenerationType* generation_ptr() const { return generation_ptr_; } void set_generation_ptr(const GenerationType* ptr) { generation_ptr_ = ptr; } private: const GenerationType* generation_ptr_ = EmptyGeneration(); GenerationType generation_ = *generation_ptr_; }; class HashSetIteratorGenerationInfoDisabled { public: HashSetIteratorGenerationInfoDisabled() = default; explicit HashSetIteratorGenerationInfoDisabled(const GenerationType*) {} GenerationType generation() const { return 0; } void reset_generation() {} const GenerationType* generation_ptr() const { return nullptr; } void set_generation_ptr(const GenerationType*) {} }; #ifdef ABSL_SWISSTABLE_ENABLE_GENERATIONS using CommonFieldsGenerationInfo = CommonFieldsGenerationInfoEnabled; using HashSetIteratorGenerationInfo = HashSetIteratorGenerationInfoEnabled; #else using CommonFieldsGenerationInfo = CommonFieldsGenerationInfoDisabled; using HashSetIteratorGenerationInfo = HashSetIteratorGenerationInfoDisabled; #endif // Stored the information regarding number of slots we can still fill // without needing to rehash. // // We want to ensure sufficient number of empty slots in the table in order // to keep probe sequences relatively short. Empty slot in the probe group // is required to stop probing. // // Tombstones (kDeleted slots) are not included in the growth capacity, // because we'd like to rehash when the table is filled with tombstones and/or // full slots. // // GrowthInfo also stores a bit that encodes whether table may have any // deleted slots. // Most of the tables (>95%) have no deleted slots, so some functions can // be more efficient with this information. // // Callers can also force a rehash via the standard `rehash(0)`, // which will recompute this value as a side-effect. // // See also `CapacityToGrowth()`. class GrowthInfo { public: // Leaves data member uninitialized. GrowthInfo() = default; // Initializes the GrowthInfo assuming we can grow `growth_left` elements // and there are no kDeleted slots in the table. void InitGrowthLeftNoDeleted(size_t growth_left) { growth_left_info_ = growth_left; } // Overwrites single full slot with an empty slot. void OverwriteFullAsEmpty() { ++growth_left_info_; } // Overwrites single empty slot with a full slot. void OverwriteEmptyAsFull() { assert(GetGrowthLeft() > 0); --growth_left_info_; } // Overwrites several empty slots with full slots. void OverwriteManyEmptyAsFull(size_t cnt) { assert(GetGrowthLeft() >= cnt); growth_left_info_ -= cnt; } // Overwrites specified control element with full slot. void OverwriteControlAsFull(ctrl_t ctrl) { assert(GetGrowthLeft() >= static_cast(IsEmpty(ctrl))); growth_left_info_ -= static_cast(IsEmpty(ctrl)); } // Overwrites single full slot with a deleted slot. void OverwriteFullAsDeleted() { growth_left_info_ |= kDeletedBit; } // Returns true if table satisfies two properties: // 1. Guaranteed to have no kDeleted slots. // 2. There is a place for at least one element to grow. bool HasNoDeletedAndGrowthLeft() const { return static_cast>(growth_left_info_) > 0; } // Returns true if the table satisfies two properties: // 1. Guaranteed to have no kDeleted slots. // 2. There is no growth left. bool HasNoGrowthLeftAndNoDeleted() const { return growth_left_info_ == 0; } // Returns true if table guaranteed to have no k bool HasNoDeleted() const { return static_cast>(growth_left_info_) >= 0; } // Returns the number of elements left to grow. size_t GetGrowthLeft() const { return growth_left_info_ & kGrowthLeftMask; } private: static constexpr size_t kGrowthLeftMask = ((~size_t{}) >> 1); static constexpr size_t kDeletedBit = ~kGrowthLeftMask; // Topmost bit signal whenever there are deleted slots. size_t growth_left_info_; }; static_assert(sizeof(GrowthInfo) == sizeof(size_t), ""); static_assert(alignof(GrowthInfo) == alignof(size_t), ""); // Returns whether `n` is a valid capacity (i.e., number of slots). // // A valid capacity is a non-zero integer `2^m - 1`. inline bool IsValidCapacity(size_t n) { return ((n + 1) & n) == 0 && n > 0; } // Returns the number of "cloned control bytes". // // This is the number of control bytes that are present both at the beginning // of the control byte array and at the end, such that we can create a // `Group::kWidth`-width probe window starting from any control byte. constexpr size_t NumClonedBytes() { return Group::kWidth - 1; } // Returns the number of control bytes including cloned. constexpr size_t NumControlBytes(size_t capacity) { return capacity + 1 + NumClonedBytes(); } // Computes the offset from the start of the backing allocation of control. // infoz and growth_info are stored at the beginning of the backing array. inline static size_t ControlOffset(bool has_infoz) { return (has_infoz ? sizeof(HashtablezInfoHandle) : 0) + sizeof(GrowthInfo); } // Helper class for computing offsets and allocation size of hash set fields. class RawHashSetLayout { public: explicit RawHashSetLayout(size_t capacity, size_t slot_align, bool has_infoz) : capacity_(capacity), control_offset_(ControlOffset(has_infoz)), generation_offset_(control_offset_ + NumControlBytes(capacity)), slot_offset_( (generation_offset_ + NumGenerationBytes() + slot_align - 1) & (~slot_align + 1)) { assert(IsValidCapacity(capacity)); } // Returns the capacity of a table. size_t capacity() const { return capacity_; } // Returns precomputed offset from the start of the backing allocation of // control. size_t control_offset() const { return control_offset_; } // Given the capacity of a table, computes the offset (from the start of the // backing allocation) of the generation counter (if it exists). size_t generation_offset() const { return generation_offset_; } // Given the capacity of a table, computes the offset (from the start of the // backing allocation) at which the slots begin. size_t slot_offset() const { return slot_offset_; } // Given the capacity of a table, computes the total size of the backing // array. size_t alloc_size(size_t slot_size) const { return slot_offset_ + capacity_ * slot_size; } private: size_t capacity_; size_t control_offset_; size_t generation_offset_; size_t slot_offset_; }; struct HashtableFreeFunctionsAccess; // We only allow a maximum of 1 SOO element, which makes the implementation // much simpler. Complications with multiple SOO elements include: // - Satisfying the guarantee that erasing one element doesn't invalidate // iterators to other elements means we would probably need actual SOO // control bytes. // - In order to prevent user code from depending on iteration order for small // tables, we would need to randomize the iteration order somehow. constexpr size_t SooCapacity() { return 1; } // Sentinel type to indicate SOO CommonFields construction. struct soo_tag_t {}; // Sentinel type to indicate SOO CommonFields construction with full size. struct full_soo_tag_t {}; // Suppress erroneous uninitialized memory errors on GCC. For example, GCC // thinks that the call to slot_array() in find_or_prepare_insert() is reading // uninitialized memory, but slot_array is only called there when the table is // non-empty and this memory is initialized when the table is non-empty. #if !defined(__clang__) && defined(__GNUC__) #define ABSL_SWISSTABLE_IGNORE_UNINITIALIZED(x) \ _Pragma("GCC diagnostic push") \ _Pragma("GCC diagnostic ignored \"-Wmaybe-uninitialized\"") \ _Pragma("GCC diagnostic ignored \"-Wuninitialized\"") x; \ _Pragma("GCC diagnostic pop") #define ABSL_SWISSTABLE_IGNORE_UNINITIALIZED_RETURN(x) \ ABSL_SWISSTABLE_IGNORE_UNINITIALIZED(return x) #else #define ABSL_SWISSTABLE_IGNORE_UNINITIALIZED(x) x #define ABSL_SWISSTABLE_IGNORE_UNINITIALIZED_RETURN(x) return x #endif // This allows us to work around an uninitialized memory warning when // constructing begin() iterators in empty hashtables. union MaybeInitializedPtr { void* get() const { ABSL_SWISSTABLE_IGNORE_UNINITIALIZED_RETURN(p); } void set(void* ptr) { p = ptr; } void* p; }; struct HeapPtrs { HeapPtrs() = default; explicit HeapPtrs(ctrl_t* c) : control(c) {} // The control bytes (and, also, a pointer near to the base of the backing // array). // // This contains `capacity + 1 + NumClonedBytes()` entries, even // when the table is empty (hence EmptyGroup). // // Note that growth_info is stored immediately before this pointer. // May be uninitialized for SOO tables. ctrl_t* control; // The beginning of the slots, located at `SlotOffset()` bytes after // `control`. May be uninitialized for empty tables. // Note: we can't use `slots` because Qt defines "slots" as a macro. MaybeInitializedPtr slot_array; }; // Manages the backing array pointers or the SOO slot. When raw_hash_set::is_soo // is true, the SOO slot is stored in `soo_data`. Otherwise, we use `heap`. union HeapOrSoo { HeapOrSoo() = default; explicit HeapOrSoo(ctrl_t* c) : heap(c) {} ctrl_t*& control() { ABSL_SWISSTABLE_IGNORE_UNINITIALIZED_RETURN(heap.control); } ctrl_t* control() const { ABSL_SWISSTABLE_IGNORE_UNINITIALIZED_RETURN(heap.control); } MaybeInitializedPtr& slot_array() { ABSL_SWISSTABLE_IGNORE_UNINITIALIZED_RETURN(heap.slot_array); } MaybeInitializedPtr slot_array() const { ABSL_SWISSTABLE_IGNORE_UNINITIALIZED_RETURN(heap.slot_array); } void* get_soo_data() { ABSL_SWISSTABLE_IGNORE_UNINITIALIZED_RETURN(soo_data); } const void* get_soo_data() const { ABSL_SWISSTABLE_IGNORE_UNINITIALIZED_RETURN(soo_data); } HeapPtrs heap; unsigned char soo_data[sizeof(HeapPtrs)]; }; // CommonFields hold the fields in raw_hash_set that do not depend // on template parameters. This allows us to conveniently pass all // of this state to helper functions as a single argument. class CommonFields : public CommonFieldsGenerationInfo { public: CommonFields() : capacity_(0), size_(0), heap_or_soo_(EmptyGroup()) {} explicit CommonFields(soo_tag_t) : capacity_(SooCapacity()), size_(0) {} explicit CommonFields(full_soo_tag_t) : capacity_(SooCapacity()), size_(size_t{1} << HasInfozShift()) {} // Not copyable CommonFields(const CommonFields&) = delete; CommonFields& operator=(const CommonFields&) = delete; // Movable CommonFields(CommonFields&& that) = default; CommonFields& operator=(CommonFields&&) = default; template static CommonFields CreateDefault() { return kSooEnabled ? CommonFields{soo_tag_t{}} : CommonFields{}; } // The inline data for SOO is written on top of control_/slots_. const void* soo_data() const { return heap_or_soo_.get_soo_data(); } void* soo_data() { return heap_or_soo_.get_soo_data(); } HeapOrSoo heap_or_soo() const { return heap_or_soo_; } const HeapOrSoo& heap_or_soo_ref() const { return heap_or_soo_; } ctrl_t* control() const { return heap_or_soo_.control(); } void set_control(ctrl_t* c) { heap_or_soo_.control() = c; } void* backing_array_start() const { // growth_info (and maybe infoz) is stored before control bytes. assert(reinterpret_cast(control()) % alignof(size_t) == 0); return control() - ControlOffset(has_infoz()); } // Note: we can't use slots() because Qt defines "slots" as a macro. void* slot_array() const { return heap_or_soo_.slot_array().get(); } MaybeInitializedPtr slots_union() const { return heap_or_soo_.slot_array(); } void set_slots(void* s) { heap_or_soo_.slot_array().set(s); } // The number of filled slots. size_t size() const { return size_ >> HasInfozShift(); } void set_size(size_t s) { size_ = (s << HasInfozShift()) | (size_ & HasInfozMask()); } void set_empty_soo() { AssertInSooMode(); size_ = 0; } void set_full_soo() { AssertInSooMode(); size_ = size_t{1} << HasInfozShift(); } void increment_size() { assert(size() < capacity()); size_ += size_t{1} << HasInfozShift(); } void decrement_size() { assert(size() > 0); size_ -= size_t{1} << HasInfozShift(); } // The total number of available slots. size_t capacity() const { return capacity_; } void set_capacity(size_t c) { assert(c == 0 || IsValidCapacity(c)); capacity_ = c; } // The number of slots we can still fill without needing to rehash. // This is stored in the heap allocation before the control bytes. // TODO(b/289225379): experiment with moving growth_info back inline to // increase room for SOO. size_t growth_left() const { return growth_info().GetGrowthLeft(); } GrowthInfo& growth_info() { auto* gl_ptr = reinterpret_cast(control()) - 1; assert(reinterpret_cast(gl_ptr) % alignof(GrowthInfo) == 0); return *gl_ptr; } GrowthInfo growth_info() const { return const_cast(this)->growth_info(); } bool has_infoz() const { return ABSL_PREDICT_FALSE((size_ & HasInfozMask()) != 0); } void set_has_infoz(bool has_infoz) { size_ = (size() << HasInfozShift()) | static_cast(has_infoz); } HashtablezInfoHandle infoz() { return has_infoz() ? *reinterpret_cast(backing_array_start()) : HashtablezInfoHandle(); } void set_infoz(HashtablezInfoHandle infoz) { assert(has_infoz()); *reinterpret_cast(backing_array_start()) = infoz; } bool should_rehash_for_bug_detection_on_insert() const { return CommonFieldsGenerationInfo:: should_rehash_for_bug_detection_on_insert(control(), capacity()); } bool should_rehash_for_bug_detection_on_move() const { return CommonFieldsGenerationInfo::should_rehash_for_bug_detection_on_move( control(), capacity()); } void reset_reserved_growth(size_t reservation) { CommonFieldsGenerationInfo::reset_reserved_growth(reservation, size()); } // The size of the backing array allocation. size_t alloc_size(size_t slot_size, size_t slot_align) const { return RawHashSetLayout(capacity(), slot_align, has_infoz()) .alloc_size(slot_size); } // Move fields other than heap_or_soo_. void move_non_heap_or_soo_fields(CommonFields& that) { static_cast(*this) = std::move(static_cast(that)); capacity_ = that.capacity_; size_ = that.size_; } // Returns the number of control bytes set to kDeleted. For testing only. size_t TombstonesCount() const { return static_cast( std::count(control(), control() + capacity(), ctrl_t::kDeleted)); } private: // We store the has_infoz bit in the lowest bit of size_. static constexpr size_t HasInfozShift() { return 1; } static constexpr size_t HasInfozMask() { return (size_t{1} << HasInfozShift()) - 1; } // We can't assert that SOO is enabled because we don't have SooEnabled(), but // we assert what we can. void AssertInSooMode() const { assert(capacity() == SooCapacity()); assert(!has_infoz()); } // The number of slots in the backing array. This is always 2^N-1 for an // integer N. NOTE: we tried experimenting with compressing the capacity and // storing it together with size_: (a) using 6 bits to store the corresponding // power (N in 2^N-1), and (b) storing 2^N as the most significant bit of // size_ and storing size in the low bits. Both of these experiments were // regressions, presumably because we need capacity to do find operations. size_t capacity_; // The size and also has one bit that stores whether we have infoz. // TODO(b/289225379): we could put size_ into HeapOrSoo and make capacity_ // encode the size in SOO case. We would be making size()/capacity() more // expensive in order to have more SOO space. size_t size_; // Either the control/slots pointers or the SOO slot. HeapOrSoo heap_or_soo_; }; template class raw_hash_set; // Returns the next valid capacity after `n`. inline size_t NextCapacity(size_t n) { assert(IsValidCapacity(n) || n == 0); return n * 2 + 1; } // Applies the following mapping to every byte in the control array: // * kDeleted -> kEmpty // * kEmpty -> kEmpty // * _ -> kDeleted // PRECONDITION: // IsValidCapacity(capacity) // ctrl[capacity] == ctrl_t::kSentinel // ctrl[i] != ctrl_t::kSentinel for all i < capacity void ConvertDeletedToEmptyAndFullToDeleted(ctrl_t* ctrl, size_t capacity); // Converts `n` into the next valid capacity, per `IsValidCapacity`. inline size_t NormalizeCapacity(size_t n) { return n ? ~size_t{} >> countl_zero(n) : 1; } // General notes on capacity/growth methods below: // - We use 7/8th as maximum load factor. For 16-wide groups, that gives an // average of two empty slots per group. // - For (capacity+1) >= Group::kWidth, growth is 7/8*capacity. // - For (capacity+1) < Group::kWidth, growth == capacity. In this case, we // never need to probe (the whole table fits in one group) so we don't need a // load factor less than 1. // Given `capacity`, applies the load factor; i.e., it returns the maximum // number of values we should put into the table before a resizing rehash. inline size_t CapacityToGrowth(size_t capacity) { assert(IsValidCapacity(capacity)); // `capacity*7/8` if (Group::kWidth == 8 && capacity == 7) { // x-x/8 does not work when x==7. return 6; } return capacity - capacity / 8; } // Given `growth`, "unapplies" the load factor to find how large the capacity // should be to stay within the load factor. // // This might not be a valid capacity and `NormalizeCapacity()` should be // called on this. inline size_t GrowthToLowerboundCapacity(size_t growth) { // `growth*8/7` if (Group::kWidth == 8 && growth == 7) { // x+(x-1)/7 does not work when x==7. return 8; } return growth + static_cast((static_cast(growth) - 1) / 7); } template size_t SelectBucketCountForIterRange(InputIter first, InputIter last, size_t bucket_count) { if (bucket_count != 0) { return bucket_count; } using InputIterCategory = typename std::iterator_traits::iterator_category; if (std::is_base_of::value) { return GrowthToLowerboundCapacity( static_cast(std::distance(first, last))); } return 0; } constexpr bool SwisstableDebugEnabled() { #if defined(ABSL_SWISSTABLE_ENABLE_GENERATIONS) || \ ABSL_OPTION_HARDENED == 1 || !defined(NDEBUG) return true; #else return false; #endif } inline void AssertIsFull(const ctrl_t* ctrl, GenerationType generation, const GenerationType* generation_ptr, const char* operation) { if (!SwisstableDebugEnabled()) return; // `SwisstableDebugEnabled()` is also true for release builds with hardening // enabled. To minimize their impact in those builds: // - use `ABSL_PREDICT_FALSE()` to provide a compiler hint for code layout // - use `ABSL_RAW_LOG()` with a format string to reduce code size and improve // the chances that the hot paths will be inlined. if (ABSL_PREDICT_FALSE(ctrl == nullptr)) { ABSL_RAW_LOG(FATAL, "%s called on end() iterator.", operation); } if (ABSL_PREDICT_FALSE(ctrl == EmptyGroup())) { ABSL_RAW_LOG(FATAL, "%s called on default-constructed iterator.", operation); } if (SwisstableGenerationsEnabled()) { if (ABSL_PREDICT_FALSE(generation != *generation_ptr)) { ABSL_RAW_LOG(FATAL, "%s called on invalid iterator. The table could have " "rehashed or moved since this iterator was initialized.", operation); } if (ABSL_PREDICT_FALSE(!IsFull(*ctrl))) { ABSL_RAW_LOG( FATAL, "%s called on invalid iterator. The element was likely erased.", operation); } } else { if (ABSL_PREDICT_FALSE(!IsFull(*ctrl))) { ABSL_RAW_LOG( FATAL, "%s called on invalid iterator. The element might have been erased " "or the table might have rehashed. Consider running with " "--config=asan to diagnose rehashing issues.", operation); } } } // Note that for comparisons, null/end iterators are valid. inline void AssertIsValidForComparison(const ctrl_t* ctrl, GenerationType generation, const GenerationType* generation_ptr) { if (!SwisstableDebugEnabled()) return; const bool ctrl_is_valid_for_comparison = ctrl == nullptr || ctrl == EmptyGroup() || IsFull(*ctrl); if (SwisstableGenerationsEnabled()) { if (ABSL_PREDICT_FALSE(generation != *generation_ptr)) { ABSL_RAW_LOG(FATAL, "Invalid iterator comparison. The table could have rehashed " "or moved since this iterator was initialized."); } if (ABSL_PREDICT_FALSE(!ctrl_is_valid_for_comparison)) { ABSL_RAW_LOG( FATAL, "Invalid iterator comparison. The element was likely erased."); } } else { ABSL_HARDENING_ASSERT( ctrl_is_valid_for_comparison && "Invalid iterator comparison. The element might have been erased or " "the table might have rehashed. Consider running with --config=asan to " "diagnose rehashing issues."); } } // If the two iterators come from the same container, then their pointers will // interleave such that ctrl_a <= ctrl_b < slot_a <= slot_b or vice/versa. // Note: we take slots by reference so that it's not UB if they're uninitialized // as long as we don't read them (when ctrl is null). inline bool AreItersFromSameContainer(const ctrl_t* ctrl_a, const ctrl_t* ctrl_b, const void* const& slot_a, const void* const& slot_b) { // If either control byte is null, then we can't tell. if (ctrl_a == nullptr || ctrl_b == nullptr) return true; const bool a_is_soo = IsSooControl(ctrl_a); if (a_is_soo != IsSooControl(ctrl_b)) return false; if (a_is_soo) return slot_a == slot_b; const void* low_slot = slot_a; const void* hi_slot = slot_b; if (ctrl_a > ctrl_b) { std::swap(ctrl_a, ctrl_b); std::swap(low_slot, hi_slot); } return ctrl_b < low_slot && low_slot <= hi_slot; } // Asserts that two iterators come from the same container. // Note: we take slots by reference so that it's not UB if they're uninitialized // as long as we don't read them (when ctrl is null). inline void AssertSameContainer(const ctrl_t* ctrl_a, const ctrl_t* ctrl_b, const void* const& slot_a, const void* const& slot_b, const GenerationType* generation_ptr_a, const GenerationType* generation_ptr_b) { if (!SwisstableDebugEnabled()) return; // `SwisstableDebugEnabled()` is also true for release builds with hardening // enabled. To minimize their impact in those builds: // - use `ABSL_PREDICT_FALSE()` to provide a compiler hint for code layout // - use `ABSL_RAW_LOG()` with a format string to reduce code size and improve // the chances that the hot paths will be inlined. // fail_if(is_invalid, message) crashes when is_invalid is true and provides // an error message based on `message`. const auto fail_if = [](bool is_invalid, const char* message) { if (ABSL_PREDICT_FALSE(is_invalid)) { ABSL_RAW_LOG(FATAL, "Invalid iterator comparison. %s", message); } }; const bool a_is_default = ctrl_a == EmptyGroup(); const bool b_is_default = ctrl_b == EmptyGroup(); if (a_is_default && b_is_default) return; fail_if(a_is_default != b_is_default, "Comparing default-constructed hashtable iterator with a " "non-default-constructed hashtable iterator."); if (SwisstableGenerationsEnabled()) { if (ABSL_PREDICT_TRUE(generation_ptr_a == generation_ptr_b)) return; // Users don't need to know whether the tables are SOO so don't mention SOO // in the debug message. const bool a_is_soo = IsSooControl(ctrl_a); const bool b_is_soo = IsSooControl(ctrl_b); fail_if(a_is_soo != b_is_soo || (a_is_soo && b_is_soo), "Comparing iterators from different hashtables."); const bool a_is_empty = IsEmptyGeneration(generation_ptr_a); const bool b_is_empty = IsEmptyGeneration(generation_ptr_b); fail_if(a_is_empty != b_is_empty, "Comparing an iterator from an empty hashtable with an iterator " "from a non-empty hashtable."); fail_if(a_is_empty && b_is_empty, "Comparing iterators from different empty hashtables."); const bool a_is_end = ctrl_a == nullptr; const bool b_is_end = ctrl_b == nullptr; fail_if(a_is_end || b_is_end, "Comparing iterator with an end() iterator from a different " "hashtable."); fail_if(true, "Comparing non-end() iterators from different hashtables."); } else { ABSL_HARDENING_ASSERT( AreItersFromSameContainer(ctrl_a, ctrl_b, slot_a, slot_b) && "Invalid iterator comparison. The iterators may be from different " "containers or the container might have rehashed or moved. Consider " "running with --config=asan to diagnose issues."); } } struct FindInfo { size_t offset; size_t probe_length; }; // Whether a table is "small". A small table fits entirely into a probing // group, i.e., has a capacity < `Group::kWidth`. // // In small mode we are able to use the whole capacity. The extra control // bytes give us at least one "empty" control byte to stop the iteration. // This is important to make 1 a valid capacity. // // In small mode only the first `capacity` control bytes after the sentinel // are valid. The rest contain dummy ctrl_t::kEmpty values that do not // represent a real slot. This is important to take into account on // `find_first_non_full()`, where we never try // `ShouldInsertBackwards()` for small tables. inline bool is_small(size_t capacity) { return capacity < Group::kWidth - 1; } // Whether a table fits entirely into a probing group. // Arbitrary order of elements in such tables is correct. inline bool is_single_group(size_t capacity) { return capacity <= Group::kWidth; } // Begins a probing operation on `common.control`, using `hash`. inline probe_seq probe(const ctrl_t* ctrl, const size_t capacity, size_t hash) { return probe_seq(H1(hash, ctrl), capacity); } inline probe_seq probe(const CommonFields& common, size_t hash) { return probe(common.control(), common.capacity(), hash); } // Probes an array of control bits using a probe sequence derived from `hash`, // and returns the offset corresponding to the first deleted or empty slot. // // Behavior when the entire table is full is undefined. // // NOTE: this function must work with tables having both empty and deleted // slots in the same group. Such tables appear during `erase()`. template inline FindInfo find_first_non_full(const CommonFields& common, size_t hash) { auto seq = probe(common, hash); const ctrl_t* ctrl = common.control(); if (IsEmptyOrDeleted(ctrl[seq.offset()]) && !ShouldInsertBackwards(common.capacity(), hash, ctrl)) { return {seq.offset(), /*probe_length=*/0}; } while (true) { GroupFullEmptyOrDeleted g{ctrl + seq.offset()}; auto mask = g.MaskEmptyOrDeleted(); if (mask) { return { seq.offset(GetInsertionOffset(mask, common.capacity(), hash, ctrl)), seq.index()}; } seq.next(); assert(seq.index() <= common.capacity() && "full table!"); } } // Extern template for inline function keep possibility of inlining. // When compiler decided to not inline, no symbols will be added to the // corresponding translation unit. extern template FindInfo find_first_non_full(const CommonFields&, size_t); // Non-inlined version of find_first_non_full for use in less // performance critical routines. FindInfo find_first_non_full_outofline(const CommonFields&, size_t); inline void ResetGrowthLeft(CommonFields& common) { common.growth_info().InitGrowthLeftNoDeleted( CapacityToGrowth(common.capacity()) - common.size()); } // Sets `ctrl` to `{kEmpty, kSentinel, ..., kEmpty}`, marking the entire // array as marked as empty. inline void ResetCtrl(CommonFields& common, size_t slot_size) { const size_t capacity = common.capacity(); ctrl_t* ctrl = common.control(); std::memset(ctrl, static_cast(ctrl_t::kEmpty), capacity + 1 + NumClonedBytes()); ctrl[capacity] = ctrl_t::kSentinel; SanitizerPoisonMemoryRegion(common.slot_array(), slot_size * capacity); } // Sets sanitizer poisoning for slot corresponding to control byte being set. inline void DoSanitizeOnSetCtrl(const CommonFields& c, size_t i, ctrl_t h, size_t slot_size) { assert(i < c.capacity()); auto* slot_i = static_cast(c.slot_array()) + i * slot_size; if (IsFull(h)) { SanitizerUnpoisonMemoryRegion(slot_i, slot_size); } else { SanitizerPoisonMemoryRegion(slot_i, slot_size); } } // Sets `ctrl[i]` to `h`. // // Unlike setting it directly, this function will perform bounds checks and // mirror the value to the cloned tail if necessary. inline void SetCtrl(const CommonFields& c, size_t i, ctrl_t h, size_t slot_size) { DoSanitizeOnSetCtrl(c, i, h, slot_size); ctrl_t* ctrl = c.control(); ctrl[i] = h; ctrl[((i - NumClonedBytes()) & c.capacity()) + (NumClonedBytes() & c.capacity())] = h; } // Overload for setting to an occupied `h2_t` rather than a special `ctrl_t`. inline void SetCtrl(const CommonFields& c, size_t i, h2_t h, size_t slot_size) { SetCtrl(c, i, static_cast(h), slot_size); } // Like SetCtrl, but in a single group table, we can save some operations when // setting the cloned control byte. inline void SetCtrlInSingleGroupTable(const CommonFields& c, size_t i, ctrl_t h, size_t slot_size) { assert(is_single_group(c.capacity())); DoSanitizeOnSetCtrl(c, i, h, slot_size); ctrl_t* ctrl = c.control(); ctrl[i] = h; ctrl[i + c.capacity() + 1] = h; } // Overload for setting to an occupied `h2_t` rather than a special `ctrl_t`. inline void SetCtrlInSingleGroupTable(const CommonFields& c, size_t i, h2_t h, size_t slot_size) { SetCtrlInSingleGroupTable(c, i, static_cast(h), slot_size); } // growth_info (which is a size_t) is stored with the backing array. constexpr size_t BackingArrayAlignment(size_t align_of_slot) { return (std::max)(align_of_slot, alignof(GrowthInfo)); } // Returns the address of the ith slot in slots where each slot occupies // slot_size. inline void* SlotAddress(void* slot_array, size_t slot, size_t slot_size) { return static_cast(static_cast(slot_array) + (slot * slot_size)); } // Iterates over all full slots and calls `cb(const ctrl_t*, SlotType*)`. // No insertion to the table allowed during Callback call. // Erasure is allowed only for the element passed to the callback. template ABSL_ATTRIBUTE_ALWAYS_INLINE inline void IterateOverFullSlots( const CommonFields& c, SlotType* slot, Callback cb) { const size_t cap = c.capacity(); const ctrl_t* ctrl = c.control(); if (is_small(cap)) { // Mirrored/cloned control bytes in small table are also located in the // first group (starting from position 0). We are taking group from position // `capacity` in order to avoid duplicates. // Small tables capacity fits into portable group, where // GroupPortableImpl::MaskFull is more efficient for the // capacity <= GroupPortableImpl::kWidth. assert(cap <= GroupPortableImpl::kWidth && "unexpectedly large small capacity"); static_assert(Group::kWidth >= GroupPortableImpl::kWidth, "unexpected group width"); // Group starts from kSentinel slot, so indices in the mask will // be increased by 1. const auto mask = GroupPortableImpl(ctrl + cap).MaskFull(); --ctrl; --slot; for (uint32_t i : mask) { cb(ctrl + i, slot + i); } return; } size_t remaining = c.size(); ABSL_ATTRIBUTE_UNUSED const size_t original_size_for_assert = remaining; while (remaining != 0) { for (uint32_t i : GroupFullEmptyOrDeleted(ctrl).MaskFull()) { assert(IsFull(ctrl[i]) && "hash table was modified unexpectedly"); cb(ctrl + i, slot + i); --remaining; } ctrl += Group::kWidth; slot += Group::kWidth; assert((remaining == 0 || *(ctrl - 1) != ctrl_t::kSentinel) && "hash table was modified unexpectedly"); } // NOTE: erasure of the current element is allowed in callback for // absl::erase_if specialization. So we use `>=`. assert(original_size_for_assert >= c.size() && "hash table was modified unexpectedly"); } template constexpr bool ShouldSampleHashtablezInfo() { // Folks with custom allocators often make unwarranted assumptions about the // behavior of their classes vis-a-vis trivial destructability and what // calls they will or won't make. Avoid sampling for people with custom // allocators to get us out of this mess. This is not a hard guarantee but // a workaround while we plan the exact guarantee we want to provide. return std::is_same>::value; } template HashtablezInfoHandle SampleHashtablezInfo(size_t sizeof_slot, size_t sizeof_key, size_t sizeof_value, size_t old_capacity, bool was_soo, HashtablezInfoHandle forced_infoz, CommonFields& c) { if (forced_infoz.IsSampled()) return forced_infoz; // In SOO, we sample on the first insertion so if this is an empty SOO case // (e.g. when reserve is called), then we still need to sample. if (kSooEnabled && was_soo && c.size() == 0) { return Sample(sizeof_slot, sizeof_key, sizeof_value, SooCapacity()); } // For non-SOO cases, we sample whenever the capacity is increasing from zero // to non-zero. if (!kSooEnabled && old_capacity == 0) { return Sample(sizeof_slot, sizeof_key, sizeof_value, 0); } return c.infoz(); } // Helper class to perform resize of the hash set. // // It contains special optimizations for small group resizes. // See GrowIntoSingleGroupShuffleControlBytes for details. class HashSetResizeHelper { public: explicit HashSetResizeHelper(CommonFields& c, bool was_soo, bool had_soo_slot, HashtablezInfoHandle forced_infoz) : old_capacity_(c.capacity()), had_infoz_(c.has_infoz()), was_soo_(was_soo), had_soo_slot_(had_soo_slot), forced_infoz_(forced_infoz) {} // Optimized for small groups version of `find_first_non_full`. // Beneficial only right after calling `raw_hash_set::resize`. // It is safe to call in case capacity is big or was not changed, but there // will be no performance benefit. // It has implicit assumption that `resize` will call // `GrowSizeIntoSingleGroup*` in case `IsGrowingIntoSingleGroupApplicable`. // Falls back to `find_first_non_full` in case of big groups. static FindInfo FindFirstNonFullAfterResize(const CommonFields& c, size_t old_capacity, size_t hash) { if (!IsGrowingIntoSingleGroupApplicable(old_capacity, c.capacity())) { return find_first_non_full(c, hash); } // Find a location for the new element non-deterministically. // Note that any position is correct. // It will located at `half_old_capacity` or one of the other // empty slots with approximately 50% probability each. size_t offset = probe(c, hash).offset(); // Note that we intentionally use unsigned int underflow. if (offset - (old_capacity + 1) >= old_capacity) { // Offset fall on kSentinel or into the mostly occupied first half. offset = old_capacity / 2; } assert(IsEmpty(c.control()[offset])); return FindInfo{offset, 0}; } HeapOrSoo& old_heap_or_soo() { return old_heap_or_soo_; } void* old_soo_data() { return old_heap_or_soo_.get_soo_data(); } ctrl_t* old_ctrl() const { assert(!was_soo_); return old_heap_or_soo_.control(); } void* old_slots() const { assert(!was_soo_); return old_heap_or_soo_.slot_array().get(); } size_t old_capacity() const { return old_capacity_; } // Returns the index of the SOO slot when growing from SOO to non-SOO in a // single group. See also InitControlBytesAfterSoo(). It's important to use // index 1 so that when resizing from capacity 1 to 3, we can still have // random iteration order between the first two inserted elements. // I.e. it allows inserting the second element at either index 0 or 2. static size_t SooSlotIndex() { return 1; } // Allocates a backing array for the hashtable. // Reads `capacity` and updates all other fields based on the result of // the allocation. // // It also may do the following actions: // 1. initialize control bytes // 2. initialize slots // 3. deallocate old slots. // // We are bundling a lot of functionality // in one ABSL_ATTRIBUTE_NOINLINE function in order to minimize binary code // duplication in raw_hash_set<>::resize. // // `c.capacity()` must be nonzero. // POSTCONDITIONS: // 1. CommonFields is initialized. // // if IsGrowingIntoSingleGroupApplicable && TransferUsesMemcpy // Both control bytes and slots are fully initialized. // old_slots are deallocated. // infoz.RecordRehash is called. // // if IsGrowingIntoSingleGroupApplicable && !TransferUsesMemcpy // Control bytes are fully initialized. // infoz.RecordRehash is called. // GrowSizeIntoSingleGroup must be called to finish slots initialization. // // if !IsGrowingIntoSingleGroupApplicable // Control bytes are initialized to empty table via ResetCtrl. // raw_hash_set<>::resize must insert elements regularly. // infoz.RecordRehash is called if old_capacity == 0. // // Returns IsGrowingIntoSingleGroupApplicable result to avoid recomputation. template ABSL_ATTRIBUTE_NOINLINE bool InitializeSlots(CommonFields& c, Alloc alloc, ctrl_t soo_slot_h2, size_t key_size, size_t value_size) { assert(c.capacity()); HashtablezInfoHandle infoz = ShouldSampleHashtablezInfo() ? SampleHashtablezInfo(SizeOfSlot, key_size, value_size, old_capacity_, was_soo_, forced_infoz_, c) : HashtablezInfoHandle{}; const bool has_infoz = infoz.IsSampled(); RawHashSetLayout layout(c.capacity(), AlignOfSlot, has_infoz); char* mem = static_cast(Allocate( &alloc, layout.alloc_size(SizeOfSlot))); const GenerationType old_generation = c.generation(); c.set_generation_ptr( reinterpret_cast(mem + layout.generation_offset())); c.set_generation(NextGeneration(old_generation)); c.set_control(reinterpret_cast(mem + layout.control_offset())); c.set_slots(mem + layout.slot_offset()); ResetGrowthLeft(c); const bool grow_single_group = IsGrowingIntoSingleGroupApplicable(old_capacity_, layout.capacity()); if (SooEnabled && was_soo_ && grow_single_group) { InitControlBytesAfterSoo(c.control(), soo_slot_h2, layout.capacity()); if (TransferUsesMemcpy && had_soo_slot_) { TransferSlotAfterSoo(c, SizeOfSlot); } // SooEnabled implies that old_capacity_ != 0. } else if ((SooEnabled || old_capacity_ != 0) && grow_single_group) { if (TransferUsesMemcpy) { GrowSizeIntoSingleGroupTransferable(c, SizeOfSlot); DeallocateOld(alloc, SizeOfSlot); } else { GrowIntoSingleGroupShuffleControlBytes(c.control(), layout.capacity()); } } else { ResetCtrl(c, SizeOfSlot); } c.set_has_infoz(has_infoz); if (has_infoz) { infoz.RecordStorageChanged(c.size(), layout.capacity()); if ((SooEnabled && was_soo_) || grow_single_group || old_capacity_ == 0) { infoz.RecordRehash(0); } c.set_infoz(infoz); } return grow_single_group; } // Relocates slots into new single group consistent with // GrowIntoSingleGroupShuffleControlBytes. // // PRECONDITIONS: // 1. GrowIntoSingleGroupShuffleControlBytes was already called. template void GrowSizeIntoSingleGroup(CommonFields& c, Alloc& alloc_ref) { assert(old_capacity_ < Group::kWidth / 2); assert(IsGrowingIntoSingleGroupApplicable(old_capacity_, c.capacity())); using slot_type = typename PolicyTraits::slot_type; assert(is_single_group(c.capacity())); auto* new_slots = static_cast(c.slot_array()); auto* old_slots_ptr = static_cast(old_slots()); size_t shuffle_bit = old_capacity_ / 2 + 1; for (size_t i = 0; i < old_capacity_; ++i) { if (IsFull(old_ctrl()[i])) { size_t new_i = i ^ shuffle_bit; SanitizerUnpoisonMemoryRegion(new_slots + new_i, sizeof(slot_type)); PolicyTraits::transfer(&alloc_ref, new_slots + new_i, old_slots_ptr + i); } } PoisonSingleGroupEmptySlots(c, sizeof(slot_type)); } // Deallocates old backing array. template void DeallocateOld(CharAlloc alloc_ref, size_t slot_size) { SanitizerUnpoisonMemoryRegion(old_slots(), slot_size * old_capacity_); auto layout = RawHashSetLayout(old_capacity_, AlignOfSlot, had_infoz_); Deallocate( &alloc_ref, old_ctrl() - layout.control_offset(), layout.alloc_size(slot_size)); } private: // Returns true if `GrowSizeIntoSingleGroup` can be used for resizing. static bool IsGrowingIntoSingleGroupApplicable(size_t old_capacity, size_t new_capacity) { // NOTE that `old_capacity < new_capacity` in order to have // `old_capacity < Group::kWidth / 2` to make faster copies of 8 bytes. return is_single_group(new_capacity) && old_capacity < new_capacity; } // Relocates control bytes and slots into new single group for // transferable objects. // Must be called only if IsGrowingIntoSingleGroupApplicable returned true. void GrowSizeIntoSingleGroupTransferable(CommonFields& c, size_t slot_size); // If there was an SOO slot and slots are transferable, transfers the SOO slot // into the new heap allocation. Must be called only if // IsGrowingIntoSingleGroupApplicable returned true. void TransferSlotAfterSoo(CommonFields& c, size_t slot_size); // Shuffle control bits deterministically to the next capacity. // Returns offset for newly added element with given hash. // // PRECONDITIONs: // 1. new_ctrl is allocated for new_capacity, // but not initialized. // 2. new_capacity is a single group. // // All elements are transferred into the first `old_capacity + 1` positions // of the new_ctrl. Elements are rotated by `old_capacity_ / 2 + 1` positions // in order to change an order and keep it non deterministic. // Although rotation itself deterministic, position of the new added element // will be based on `H1` and is not deterministic. // // Examples: // S = kSentinel, E = kEmpty // // old_ctrl = SEEEEEEEE... // new_ctrl = ESEEEEEEE... // // old_ctrl = 0SEEEEEEE... // new_ctrl = E0ESE0EEE... // // old_ctrl = 012S012EEEEEEEEE... // new_ctrl = 2E01EEES2E01EEE... // // old_ctrl = 0123456S0123456EEEEEEEEEEE... // new_ctrl = 456E0123EEEEEES456E0123EEE... void GrowIntoSingleGroupShuffleControlBytes(ctrl_t* new_ctrl, size_t new_capacity) const; // If the table was SOO, initializes new control bytes. `h2` is the control // byte corresponding to the full slot. Must be called only if // IsGrowingIntoSingleGroupApplicable returned true. // Requires: `had_soo_slot_ || h2 == ctrl_t::kEmpty`. void InitControlBytesAfterSoo(ctrl_t* new_ctrl, ctrl_t h2, size_t new_capacity); // Shuffle trivially transferable slots in the way consistent with // GrowIntoSingleGroupShuffleControlBytes. // // PRECONDITIONs: // 1. old_capacity must be non-zero. // 2. new_ctrl is fully initialized using // GrowIntoSingleGroupShuffleControlBytes. // 3. new_slots is allocated and *not* poisoned. // // POSTCONDITIONS: // 1. new_slots are transferred from old_slots_ consistent with // GrowIntoSingleGroupShuffleControlBytes. // 2. Empty new_slots are *not* poisoned. void GrowIntoSingleGroupShuffleTransferableSlots(void* new_slots, size_t slot_size) const; // Poison empty slots that were transferred using the deterministic algorithm // described above. // PRECONDITIONs: // 1. new_ctrl is fully initialized using // GrowIntoSingleGroupShuffleControlBytes. // 2. new_slots is fully initialized consistent with // GrowIntoSingleGroupShuffleControlBytes. void PoisonSingleGroupEmptySlots(CommonFields& c, size_t slot_size) const { // poison non full items for (size_t i = 0; i < c.capacity(); ++i) { if (!IsFull(c.control()[i])) { SanitizerPoisonMemoryRegion(SlotAddress(c.slot_array(), i, slot_size), slot_size); } } } HeapOrSoo old_heap_or_soo_; size_t old_capacity_; bool had_infoz_; bool was_soo_; bool had_soo_slot_; // Either null infoz or a pre-sampled forced infoz for SOO tables. HashtablezInfoHandle forced_infoz_; }; inline void PrepareInsertCommon(CommonFields& common) { common.increment_size(); common.maybe_increment_generation_on_insert(); } // Like prepare_insert, but for the case of inserting into a full SOO table. size_t PrepareInsertAfterSoo(size_t hash, size_t slot_size, CommonFields& common); // PolicyFunctions bundles together some information for a particular // raw_hash_set instantiation. This information is passed to // type-erased functions that want to do small amounts of type-specific // work. struct PolicyFunctions { size_t slot_size; // Returns the pointer to the hash function stored in the set. const void* (*hash_fn)(const CommonFields& common); // Returns the hash of the pointed-to slot. size_t (*hash_slot)(const void* hash_fn, void* slot); // Transfers the contents of src_slot to dst_slot. void (*transfer)(void* set, void* dst_slot, void* src_slot); // Deallocates the backing store from common. void (*dealloc)(CommonFields& common, const PolicyFunctions& policy); // Resizes set to the new capacity. // Arguments are used as in raw_hash_set::resize_impl. void (*resize)(CommonFields& common, size_t new_capacity, HashtablezInfoHandle forced_infoz); }; // ClearBackingArray clears the backing array, either modifying it in place, // or creating a new one based on the value of "reuse". // REQUIRES: c.capacity > 0 void ClearBackingArray(CommonFields& c, const PolicyFunctions& policy, bool reuse, bool soo_enabled); // Type-erased version of raw_hash_set::erase_meta_only. void EraseMetaOnly(CommonFields& c, size_t index, size_t slot_size); // Function to place in PolicyFunctions::dealloc for raw_hash_sets // that are using std::allocator. This allows us to share the same // function body for raw_hash_set instantiations that have the // same slot alignment. template ABSL_ATTRIBUTE_NOINLINE void DeallocateStandard(CommonFields& common, const PolicyFunctions& policy) { // Unpoison before returning the memory to the allocator. SanitizerUnpoisonMemoryRegion(common.slot_array(), policy.slot_size * common.capacity()); std::allocator alloc; common.infoz().Unregister(); Deallocate( &alloc, common.backing_array_start(), common.alloc_size(policy.slot_size, AlignOfSlot)); } // For trivially relocatable types we use memcpy directly. This allows us to // share the same function body for raw_hash_set instantiations that have the // same slot size as long as they are relocatable. template ABSL_ATTRIBUTE_NOINLINE void TransferRelocatable(void*, void* dst, void* src) { memcpy(dst, src, SizeOfSlot); } // Type erased raw_hash_set::get_hash_ref_fn for the empty hash function case. const void* GetHashRefForEmptyHasher(const CommonFields& common); // Given the hash of a value not currently in the table and the first empty // slot in the probe sequence, finds a viable slot index to insert it at. // // In case there's no space left, the table can be resized or rehashed // (for tables with deleted slots, see FindInsertPositionWithGrowthOrRehash). // // In the case of absence of deleted slots and positive growth_left, the element // can be inserted in the provided `target` position. // // When the table has deleted slots (according to GrowthInfo), the target // position will be searched one more time using `find_first_non_full`. // // REQUIRES: Table is not SOO. // REQUIRES: At least one non-full slot available. // REQUIRES: `target` is a valid empty position to insert. size_t PrepareInsertNonSoo(CommonFields& common, size_t hash, FindInfo target, const PolicyFunctions& policy); // A SwissTable. // // Policy: a policy defines how to perform different operations on // the slots of the hashtable (see hash_policy_traits.h for the full interface // of policy). // // Hash: a (possibly polymorphic) functor that hashes keys of the hashtable. The // functor should accept a key and return size_t as hash. For best performance // it is important that the hash function provides high entropy across all bits // of the hash. // // Eq: a (possibly polymorphic) functor that compares two keys for equality. It // should accept two (of possibly different type) keys and return a bool: true // if they are equal, false if they are not. If two keys compare equal, then // their hash values as defined by Hash MUST be equal. // // Allocator: an Allocator // [https://en.cppreference.com/w/cpp/named_req/Allocator] with which // the storage of the hashtable will be allocated and the elements will be // constructed and destroyed. template class raw_hash_set { using PolicyTraits = hash_policy_traits; using KeyArgImpl = KeyArg::value && IsTransparent::value>; public: using init_type = typename PolicyTraits::init_type; using key_type = typename PolicyTraits::key_type; // TODO(sbenza): Hide slot_type as it is an implementation detail. Needs user // code fixes! using slot_type = typename PolicyTraits::slot_type; using allocator_type = Alloc; using size_type = size_t; using difference_type = ptrdiff_t; using hasher = Hash; using key_equal = Eq; using policy_type = Policy; using value_type = typename PolicyTraits::value_type; using reference = value_type&; using const_reference = const value_type&; using pointer = typename absl::allocator_traits< allocator_type>::template rebind_traits::pointer; using const_pointer = typename absl::allocator_traits< allocator_type>::template rebind_traits::const_pointer; // Alias used for heterogeneous lookup functions. // `key_arg` evaluates to `K` when the functors are transparent and to // `key_type` otherwise. It permits template argument deduction on `K` for the // transparent case. template using key_arg = typename KeyArgImpl::template type; private: // TODO(b/289225379): we could add extra SOO space inside raw_hash_set // after CommonFields to allow inlining larger slot_types (e.g. std::string), // but it's a bit complicated if we want to support incomplete mapped_type in // flat_hash_map. We could potentially do this for flat_hash_set and for an // allowlist of `mapped_type`s of flat_hash_map that includes e.g. arithmetic // types, strings, cords, and pairs/tuples of allowlisted types. constexpr static bool SooEnabled() { return PolicyTraits::soo_enabled() && sizeof(slot_type) <= sizeof(HeapOrSoo) && alignof(slot_type) <= alignof(HeapOrSoo); } // Whether `size` fits in the SOO capacity of this table. bool fits_in_soo(size_t size) const { return SooEnabled() && size <= SooCapacity(); } // Whether this table is in SOO mode or non-SOO mode. bool is_soo() const { return fits_in_soo(capacity()); } bool is_full_soo() const { return is_soo() && !empty(); } // Give an early error when key_type is not hashable/eq. auto KeyTypeCanBeHashed(const Hash& h, const key_type& k) -> decltype(h(k)); auto KeyTypeCanBeEq(const Eq& eq, const key_type& k) -> decltype(eq(k, k)); using AllocTraits = absl::allocator_traits; using SlotAlloc = typename absl::allocator_traits< allocator_type>::template rebind_alloc; // People are often sloppy with the exact type of their allocator (sometimes // it has an extra const or is missing the pair, but rebinds made it work // anyway). using CharAlloc = typename absl::allocator_traits::template rebind_alloc; using SlotAllocTraits = typename absl::allocator_traits< allocator_type>::template rebind_traits; static_assert(std::is_lvalue_reference::value, "Policy::element() must return a reference"); template struct SameAsElementReference : std::is_same::type>::type, typename std::remove_cv< typename std::remove_reference::type>::type> {}; // An enabler for insert(T&&): T must be convertible to init_type or be the // same as [cv] value_type [ref]. // Note: we separate SameAsElementReference into its own type to avoid using // reference unless we need to. MSVC doesn't seem to like it in some // cases. template using RequiresInsertable = typename std::enable_if< absl::disjunction, SameAsElementReference>::value, int>::type; // RequiresNotInit is a workaround for gcc prior to 7.1. // See https://godbolt.org/g/Y4xsUh. template using RequiresNotInit = typename std::enable_if::value, int>::type; template using IsDecomposable = IsDecomposable; public: static_assert(std::is_same::value, "Allocators with custom pointer types are not supported"); static_assert(std::is_same::value, "Allocators with custom pointer types are not supported"); class iterator : private HashSetIteratorGenerationInfo { friend class raw_hash_set; friend struct HashtableFreeFunctionsAccess; public: using iterator_category = std::forward_iterator_tag; using value_type = typename raw_hash_set::value_type; using reference = absl::conditional_t; using pointer = absl::remove_reference_t*; using difference_type = typename raw_hash_set::difference_type; iterator() {} // PRECONDITION: not an end() iterator. reference operator*() const { AssertIsFull(ctrl_, generation(), generation_ptr(), "operator*()"); return unchecked_deref(); } // PRECONDITION: not an end() iterator. pointer operator->() const { AssertIsFull(ctrl_, generation(), generation_ptr(), "operator->"); return &operator*(); } // PRECONDITION: not an end() iterator. iterator& operator++() { AssertIsFull(ctrl_, generation(), generation_ptr(), "operator++"); ++ctrl_; ++slot_; skip_empty_or_deleted(); if (ABSL_PREDICT_FALSE(*ctrl_ == ctrl_t::kSentinel)) ctrl_ = nullptr; return *this; } // PRECONDITION: not an end() iterator. iterator operator++(int) { auto tmp = *this; ++*this; return tmp; } friend bool operator==(const iterator& a, const iterator& b) { AssertIsValidForComparison(a.ctrl_, a.generation(), a.generation_ptr()); AssertIsValidForComparison(b.ctrl_, b.generation(), b.generation_ptr()); AssertSameContainer(a.ctrl_, b.ctrl_, a.slot_, b.slot_, a.generation_ptr(), b.generation_ptr()); return a.ctrl_ == b.ctrl_; } friend bool operator!=(const iterator& a, const iterator& b) { return !(a == b); } private: iterator(ctrl_t* ctrl, slot_type* slot, const GenerationType* generation_ptr) : HashSetIteratorGenerationInfo(generation_ptr), ctrl_(ctrl), slot_(slot) { // This assumption helps the compiler know that any non-end iterator is // not equal to any end iterator. ABSL_ASSUME(ctrl != nullptr); } // This constructor is used in begin() to avoid an MSan // use-of-uninitialized-value error. Delegating from this constructor to // the previous one doesn't avoid the error. iterator(ctrl_t* ctrl, MaybeInitializedPtr slot, const GenerationType* generation_ptr) : HashSetIteratorGenerationInfo(generation_ptr), ctrl_(ctrl), slot_(to_slot(slot.get())) { // This assumption helps the compiler know that any non-end iterator is // not equal to any end iterator. ABSL_ASSUME(ctrl != nullptr); } // For end() iterators. explicit iterator(const GenerationType* generation_ptr) : HashSetIteratorGenerationInfo(generation_ptr), ctrl_(nullptr) {} // Fixes up `ctrl_` to point to a full or sentinel by advancing `ctrl_` and // `slot_` until they reach one. void skip_empty_or_deleted() { while (IsEmptyOrDeleted(*ctrl_)) { uint32_t shift = GroupFullEmptyOrDeleted{ctrl_}.CountLeadingEmptyOrDeleted(); ctrl_ += shift; slot_ += shift; } } ctrl_t* control() const { return ctrl_; } slot_type* slot() const { return slot_; } // We use EmptyGroup() for default-constructed iterators so that they can // be distinguished from end iterators, which have nullptr ctrl_. ctrl_t* ctrl_ = EmptyGroup(); // To avoid uninitialized member warnings, put slot_ in an anonymous union. // The member is not initialized on singleton and end iterators. union { slot_type* slot_; }; // An equality check which skips ABSL Hardening iterator invalidation // checks. // Should be used when the lifetimes of the iterators are well-enough // understood to prove that they cannot be invalid. bool unchecked_equals(const iterator& b) { return ctrl_ == b.control(); } // Dereferences the iterator without ABSL Hardening iterator invalidation // checks. reference unchecked_deref() const { return PolicyTraits::element(slot_); } }; class const_iterator { friend class raw_hash_set; template friend struct absl::container_internal::hashtable_debug_internal:: HashtableDebugAccess; public: using iterator_category = typename iterator::iterator_category; using value_type = typename raw_hash_set::value_type; using reference = typename raw_hash_set::const_reference; using pointer = typename raw_hash_set::const_pointer; using difference_type = typename raw_hash_set::difference_type; const_iterator() = default; // Implicit construction from iterator. const_iterator(iterator i) : inner_(std::move(i)) {} // NOLINT reference operator*() const { return *inner_; } pointer operator->() const { return inner_.operator->(); } const_iterator& operator++() { ++inner_; return *this; } const_iterator operator++(int) { return inner_++; } friend bool operator==(const const_iterator& a, const const_iterator& b) { return a.inner_ == b.inner_; } friend bool operator!=(const const_iterator& a, const const_iterator& b) { return !(a == b); } private: const_iterator(const ctrl_t* ctrl, const slot_type* slot, const GenerationType* gen) : inner_(const_cast(ctrl), const_cast(slot), gen) { } ctrl_t* control() const { return inner_.control(); } slot_type* slot() const { return inner_.slot(); } iterator inner_; bool unchecked_equals(const const_iterator& b) { return inner_.unchecked_equals(b.inner_); } }; using node_type = node_handle, Alloc>; using insert_return_type = InsertReturnType; // Note: can't use `= default` due to non-default noexcept (causes // problems for some compilers). NOLINTNEXTLINE raw_hash_set() noexcept( std::is_nothrow_default_constructible::value && std::is_nothrow_default_constructible::value && std::is_nothrow_default_constructible::value) {} ABSL_ATTRIBUTE_NOINLINE explicit raw_hash_set( size_t bucket_count, const hasher& hash = hasher(), const key_equal& eq = key_equal(), const allocator_type& alloc = allocator_type()) : settings_(CommonFields::CreateDefault(), hash, eq, alloc) { if (bucket_count > (SooEnabled() ? SooCapacity() : 0)) { resize(NormalizeCapacity(bucket_count)); } } raw_hash_set(size_t bucket_count, const hasher& hash, const allocator_type& alloc) : raw_hash_set(bucket_count, hash, key_equal(), alloc) {} raw_hash_set(size_t bucket_count, const allocator_type& alloc) : raw_hash_set(bucket_count, hasher(), key_equal(), alloc) {} explicit raw_hash_set(const allocator_type& alloc) : raw_hash_set(0, hasher(), key_equal(), alloc) {} template raw_hash_set(InputIter first, InputIter last, size_t bucket_count = 0, const hasher& hash = hasher(), const key_equal& eq = key_equal(), const allocator_type& alloc = allocator_type()) : raw_hash_set(SelectBucketCountForIterRange(first, last, bucket_count), hash, eq, alloc) { insert(first, last); } template raw_hash_set(InputIter first, InputIter last, size_t bucket_count, const hasher& hash, const allocator_type& alloc) : raw_hash_set(first, last, bucket_count, hash, key_equal(), alloc) {} template raw_hash_set(InputIter first, InputIter last, size_t bucket_count, const allocator_type& alloc) : raw_hash_set(first, last, bucket_count, hasher(), key_equal(), alloc) {} template raw_hash_set(InputIter first, InputIter last, const allocator_type& alloc) : raw_hash_set(first, last, 0, hasher(), key_equal(), alloc) {} // Instead of accepting std::initializer_list as the first // argument like std::unordered_set does, we have two overloads // that accept std::initializer_list and std::initializer_list. // This is advantageous for performance. // // // Turns {"abc", "def"} into std::initializer_list, then // // copies the strings into the set. // std::unordered_set s = {"abc", "def"}; // // // Turns {"abc", "def"} into std::initializer_list, then // // copies the strings into the set. // absl::flat_hash_set s = {"abc", "def"}; // // The same trick is used in insert(). // // The enabler is necessary to prevent this constructor from triggering where // the copy constructor is meant to be called. // // absl::flat_hash_set a, b{a}; // // RequiresNotInit is a workaround for gcc prior to 7.1. template = 0, RequiresInsertable = 0> raw_hash_set(std::initializer_list init, size_t bucket_count = 0, const hasher& hash = hasher(), const key_equal& eq = key_equal(), const allocator_type& alloc = allocator_type()) : raw_hash_set(init.begin(), init.end(), bucket_count, hash, eq, alloc) {} raw_hash_set(std::initializer_list init, size_t bucket_count = 0, const hasher& hash = hasher(), const key_equal& eq = key_equal(), const allocator_type& alloc = allocator_type()) : raw_hash_set(init.begin(), init.end(), bucket_count, hash, eq, alloc) {} template = 0, RequiresInsertable = 0> raw_hash_set(std::initializer_list init, size_t bucket_count, const hasher& hash, const allocator_type& alloc) : raw_hash_set(init, bucket_count, hash, key_equal(), alloc) {} raw_hash_set(std::initializer_list init, size_t bucket_count, const hasher& hash, const allocator_type& alloc) : raw_hash_set(init, bucket_count, hash, key_equal(), alloc) {} template = 0, RequiresInsertable = 0> raw_hash_set(std::initializer_list init, size_t bucket_count, const allocator_type& alloc) : raw_hash_set(init, bucket_count, hasher(), key_equal(), alloc) {} raw_hash_set(std::initializer_list init, size_t bucket_count, const allocator_type& alloc) : raw_hash_set(init, bucket_count, hasher(), key_equal(), alloc) {} template = 0, RequiresInsertable = 0> raw_hash_set(std::initializer_list init, const allocator_type& alloc) : raw_hash_set(init, 0, hasher(), key_equal(), alloc) {} raw_hash_set(std::initializer_list init, const allocator_type& alloc) : raw_hash_set(init, 0, hasher(), key_equal(), alloc) {} raw_hash_set(const raw_hash_set& that) : raw_hash_set(that, AllocTraits::select_on_container_copy_construction( that.alloc_ref())) {} raw_hash_set(const raw_hash_set& that, const allocator_type& a) : raw_hash_set(GrowthToLowerboundCapacity(that.size()), that.hash_ref(), that.eq_ref(), a) { const size_t size = that.size(); if (size == 0) { return; } // We don't use `that.is_soo()` here because `that` can have non-SOO // capacity but have a size that fits into SOO capacity. if (fits_in_soo(size)) { assert(size == 1); common().set_full_soo(); emplace_at(soo_iterator(), *that.begin()); const HashtablezInfoHandle infoz = try_sample_soo(); if (infoz.IsSampled()) resize_with_soo_infoz(infoz); return; } assert(!that.is_soo()); const size_t cap = capacity(); // Note about single group tables: // 1. It is correct to have any order of elements. // 2. Order has to be non deterministic. // 3. We are assigning elements with arbitrary `shift` starting from // `capacity + shift` position. // 4. `shift` must be coprime with `capacity + 1` in order to be able to use // modular arithmetic to traverse all positions, instead if cycling // through a subset of positions. Odd numbers are coprime with any // `capacity + 1` (2^N). size_t offset = cap; const size_t shift = is_single_group(cap) ? (PerTableSalt(control()) | 1) : 0; IterateOverFullSlots( that.common(), that.slot_array(), [&](const ctrl_t* that_ctrl, slot_type* that_slot) ABSL_ATTRIBUTE_ALWAYS_INLINE { if (shift == 0) { // Big tables case. Position must be searched via probing. // The table is guaranteed to be empty, so we can do faster than // a full `insert`. const size_t hash = PolicyTraits::apply( HashElement{hash_ref()}, PolicyTraits::element(that_slot)); FindInfo target = find_first_non_full_outofline(common(), hash); infoz().RecordInsert(hash, target.probe_length); offset = target.offset; } else { // Small tables case. Next position is computed via shift. offset = (offset + shift) & cap; } const h2_t h2 = static_cast(*that_ctrl); assert( // We rely that hash is not changed for small tables. H2(PolicyTraits::apply(HashElement{hash_ref()}, PolicyTraits::element(that_slot))) == h2 && "hash function value changed unexpectedly during the copy"); SetCtrl(common(), offset, h2, sizeof(slot_type)); emplace_at(iterator_at(offset), PolicyTraits::element(that_slot)); common().maybe_increment_generation_on_insert(); }); if (shift != 0) { // On small table copy we do not record individual inserts. // RecordInsert requires hash, but it is unknown for small tables. infoz().RecordStorageChanged(size, cap); } common().set_size(size); growth_info().OverwriteManyEmptyAsFull(size); } ABSL_ATTRIBUTE_NOINLINE raw_hash_set(raw_hash_set&& that) noexcept( std::is_nothrow_copy_constructible::value && std::is_nothrow_copy_constructible::value && std::is_nothrow_copy_constructible::value) : // Hash, equality and allocator are copied instead of moved because // `that` must be left valid. If Hash is std::function, moving it // would create a nullptr functor that cannot be called. // TODO(b/296061262): move instead of copying hash/eq/alloc. // Note: we avoid using exchange for better generated code. settings_(PolicyTraits::transfer_uses_memcpy() || !that.is_full_soo() ? std::move(that.common()) : CommonFields{full_soo_tag_t{}}, that.hash_ref(), that.eq_ref(), that.alloc_ref()) { if (!PolicyTraits::transfer_uses_memcpy() && that.is_full_soo()) { transfer(soo_slot(), that.soo_slot()); } that.common() = CommonFields::CreateDefault(); maybe_increment_generation_or_rehash_on_move(); } raw_hash_set(raw_hash_set&& that, const allocator_type& a) : settings_(CommonFields::CreateDefault(), that.hash_ref(), that.eq_ref(), a) { if (a == that.alloc_ref()) { swap_common(that); maybe_increment_generation_or_rehash_on_move(); } else { move_elements_allocs_unequal(std::move(that)); } } raw_hash_set& operator=(const raw_hash_set& that) { if (ABSL_PREDICT_FALSE(this == &that)) return *this; constexpr bool propagate_alloc = AllocTraits::propagate_on_container_copy_assignment::value; // TODO(ezb): maybe avoid allocating a new backing array if this->capacity() // is an exact match for that.size(). If this->capacity() is too big, then // it would make iteration very slow to reuse the allocation. Maybe we can // do the same heuristic as clear() and reuse if it's small enough. raw_hash_set tmp(that, propagate_alloc ? that.alloc_ref() : alloc_ref()); // NOLINTNEXTLINE: not returning *this for performance. return assign_impl(std::move(tmp)); } raw_hash_set& operator=(raw_hash_set&& that) noexcept( absl::allocator_traits::is_always_equal::value && std::is_nothrow_move_assignable::value && std::is_nothrow_move_assignable::value) { // TODO(sbenza): We should only use the operations from the noexcept clause // to make sure we actually adhere to that contract. // NOLINTNEXTLINE: not returning *this for performance. return move_assign( std::move(that), typename AllocTraits::propagate_on_container_move_assignment()); } ~raw_hash_set() { destructor_impl(); } iterator begin() ABSL_ATTRIBUTE_LIFETIME_BOUND { if (ABSL_PREDICT_FALSE(empty())) return end(); if (is_soo()) return soo_iterator(); iterator it = {control(), common().slots_union(), common().generation_ptr()}; it.skip_empty_or_deleted(); assert(IsFull(*it.control())); return it; } iterator end() ABSL_ATTRIBUTE_LIFETIME_BOUND { return iterator(common().generation_ptr()); } const_iterator begin() const ABSL_ATTRIBUTE_LIFETIME_BOUND { return const_cast(this)->begin(); } const_iterator end() const ABSL_ATTRIBUTE_LIFETIME_BOUND { return iterator(common().generation_ptr()); } const_iterator cbegin() const ABSL_ATTRIBUTE_LIFETIME_BOUND { return begin(); } const_iterator cend() const ABSL_ATTRIBUTE_LIFETIME_BOUND { return end(); } bool empty() const { return !size(); } size_t size() const { return common().size(); } size_t capacity() const { const size_t cap = common().capacity(); // Compiler complains when using functions in assume so use local variables. ABSL_ATTRIBUTE_UNUSED static constexpr bool kEnabled = SooEnabled(); ABSL_ATTRIBUTE_UNUSED static constexpr size_t kCapacity = SooCapacity(); ABSL_ASSUME(!kEnabled || cap >= kCapacity); return cap; } size_t max_size() const { return (std::numeric_limits::max)(); } ABSL_ATTRIBUTE_REINITIALIZES void clear() { // Iterating over this container is O(bucket_count()). When bucket_count() // is much greater than size(), iteration becomes prohibitively expensive. // For clear() it is more important to reuse the allocated array when the // container is small because allocation takes comparatively long time // compared to destruction of the elements of the container. So we pick the // largest bucket_count() threshold for which iteration is still fast and // past that we simply deallocate the array. const size_t cap = capacity(); if (cap == 0) { // Already guaranteed to be empty; so nothing to do. } else if (is_soo()) { if (!empty()) destroy(soo_slot()); common().set_empty_soo(); } else { destroy_slots(); ClearBackingArray(common(), GetPolicyFunctions(), /*reuse=*/cap < 128, SooEnabled()); } common().set_reserved_growth(0); common().set_reservation_size(0); } // This overload kicks in when the argument is an rvalue of insertable and // decomposable type other than init_type. // // flat_hash_map m; // m.insert(std::make_pair("abc", 42)); // TODO(cheshire): A type alias T2 is introduced as a workaround for the nvcc // bug. template = 0, class T2 = T, typename std::enable_if::value, int>::type = 0, T* = nullptr> std::pair insert(T&& value) ABSL_ATTRIBUTE_LIFETIME_BOUND { return emplace(std::forward(value)); } // This overload kicks in when the argument is a bitfield or an lvalue of // insertable and decomposable type. // // union { int n : 1; }; // flat_hash_set s; // s.insert(n); // // flat_hash_set s; // const char* p = "hello"; // s.insert(p); // template < class T, RequiresInsertable = 0, typename std::enable_if::value, int>::type = 0> std::pair insert(const T& value) ABSL_ATTRIBUTE_LIFETIME_BOUND { return emplace(value); } // This overload kicks in when the argument is an rvalue of init_type. Its // purpose is to handle brace-init-list arguments. // // flat_hash_map s; // s.insert({"abc", 42}); std::pair insert(init_type&& value) ABSL_ATTRIBUTE_LIFETIME_BOUND { return emplace(std::move(value)); } // TODO(cheshire): A type alias T2 is introduced as a workaround for the nvcc // bug. template = 0, class T2 = T, typename std::enable_if::value, int>::type = 0, T* = nullptr> iterator insert(const_iterator, T&& value) ABSL_ATTRIBUTE_LIFETIME_BOUND { return insert(std::forward(value)).first; } template < class T, RequiresInsertable = 0, typename std::enable_if::value, int>::type = 0> iterator insert(const_iterator, const T& value) ABSL_ATTRIBUTE_LIFETIME_BOUND { return insert(value).first; } iterator insert(const_iterator, init_type&& value) ABSL_ATTRIBUTE_LIFETIME_BOUND { return insert(std::move(value)).first; } template void insert(InputIt first, InputIt last) { for (; first != last; ++first) emplace(*first); } template = 0, RequiresInsertable = 0> void insert(std::initializer_list ilist) { insert(ilist.begin(), ilist.end()); } void insert(std::initializer_list ilist) { insert(ilist.begin(), ilist.end()); } insert_return_type insert(node_type&& node) ABSL_ATTRIBUTE_LIFETIME_BOUND { if (!node) return {end(), false, node_type()}; const auto& elem = PolicyTraits::element(CommonAccess::GetSlot(node)); auto res = PolicyTraits::apply( InsertSlot{*this, std::move(*CommonAccess::GetSlot(node))}, elem); if (res.second) { CommonAccess::Reset(&node); return {res.first, true, node_type()}; } else { return {res.first, false, std::move(node)}; } } iterator insert(const_iterator, node_type&& node) ABSL_ATTRIBUTE_LIFETIME_BOUND { auto res = insert(std::move(node)); node = std::move(res.node); return res.position; } // This overload kicks in if we can deduce the key from args. This enables us // to avoid constructing value_type if an entry with the same key already // exists. // // For example: // // flat_hash_map m = {{"abc", "def"}}; // // Creates no std::string copies and makes no heap allocations. // m.emplace("abc", "xyz"); template ::value, int>::type = 0> std::pair emplace(Args&&... args) ABSL_ATTRIBUTE_LIFETIME_BOUND { return PolicyTraits::apply(EmplaceDecomposable{*this}, std::forward(args)...); } // This overload kicks in if we cannot deduce the key from args. It constructs // value_type unconditionally and then either moves it into the table or // destroys. template ::value, int>::type = 0> std::pair emplace(Args&&... args) ABSL_ATTRIBUTE_LIFETIME_BOUND { alignas(slot_type) unsigned char raw[sizeof(slot_type)]; slot_type* slot = to_slot(&raw); construct(slot, std::forward(args)...); const auto& elem = PolicyTraits::element(slot); return PolicyTraits::apply(InsertSlot{*this, std::move(*slot)}, elem); } template iterator emplace_hint(const_iterator, Args&&... args) ABSL_ATTRIBUTE_LIFETIME_BOUND { return emplace(std::forward(args)...).first; } // Extension API: support for lazy emplace. // // Looks up key in the table. If found, returns the iterator to the element. // Otherwise calls `f` with one argument of type `raw_hash_set::constructor`, // and returns an iterator to the new element. // // `f` must abide by several restrictions: // - it MUST call `raw_hash_set::constructor` with arguments as if a // `raw_hash_set::value_type` is constructed, // - it MUST NOT access the container before the call to // `raw_hash_set::constructor`, and // - it MUST NOT erase the lazily emplaced element. // Doing any of these is undefined behavior. // // For example: // // std::unordered_set s; // // Makes ArenaStr even if "abc" is in the map. // s.insert(ArenaString(&arena, "abc")); // // flat_hash_set s; // // Makes ArenaStr only if "abc" is not in the map. // s.lazy_emplace("abc", [&](const constructor& ctor) { // ctor(&arena, "abc"); // }); // // WARNING: This API is currently experimental. If there is a way to implement // the same thing with the rest of the API, prefer that. class constructor { friend class raw_hash_set; public: template void operator()(Args&&... args) const { assert(*slot_); PolicyTraits::construct(alloc_, *slot_, std::forward(args)...); *slot_ = nullptr; } private: constructor(allocator_type* a, slot_type** slot) : alloc_(a), slot_(slot) {} allocator_type* alloc_; slot_type** slot_; }; template iterator lazy_emplace(const key_arg& key, F&& f) ABSL_ATTRIBUTE_LIFETIME_BOUND { auto res = find_or_prepare_insert(key); if (res.second) { slot_type* slot = res.first.slot(); std::forward(f)(constructor(&alloc_ref(), &slot)); assert(!slot); } return res.first; } // Extension API: support for heterogeneous keys. // // std::unordered_set s; // // Turns "abc" into std::string. // s.erase("abc"); // // flat_hash_set s; // // Uses "abc" directly without copying it into std::string. // s.erase("abc"); template size_type erase(const key_arg& key) { auto it = find(key); if (it == end()) return 0; erase(it); return 1; } // Erases the element pointed to by `it`. Unlike `std::unordered_set::erase`, // this method returns void to reduce algorithmic complexity to O(1). The // iterator is invalidated, so any increment should be done before calling // erase. In order to erase while iterating across a map, use the following // idiom (which also works for some standard containers): // // for (auto it = m.begin(), end = m.end(); it != end;) { // // `erase()` will invalidate `it`, so advance `it` first. // auto copy_it = it++; // if () { // m.erase(copy_it); // } // } void erase(const_iterator cit) { erase(cit.inner_); } // This overload is necessary because otherwise erase(const K&) would be // a better match if non-const iterator is passed as an argument. void erase(iterator it) { AssertIsFull(it.control(), it.generation(), it.generation_ptr(), "erase()"); destroy(it.slot()); if (is_soo()) { common().set_empty_soo(); } else { erase_meta_only(it); } } iterator erase(const_iterator first, const_iterator last) ABSL_ATTRIBUTE_LIFETIME_BOUND { // We check for empty first because ClearBackingArray requires that // capacity() > 0 as a precondition. if (empty()) return end(); if (first == last) return last.inner_; if (is_soo()) { destroy(soo_slot()); common().set_empty_soo(); return end(); } if (first == begin() && last == end()) { // TODO(ezb): we access control bytes in destroy_slots so it could make // sense to combine destroy_slots and ClearBackingArray to avoid cache // misses when the table is large. Note that we also do this in clear(). destroy_slots(); ClearBackingArray(common(), GetPolicyFunctions(), /*reuse=*/true, SooEnabled()); common().set_reserved_growth(common().reservation_size()); return end(); } while (first != last) { erase(first++); } return last.inner_; } // Moves elements from `src` into `this`. // If the element already exists in `this`, it is left unmodified in `src`. template void merge(raw_hash_set& src) { // NOLINT assert(this != &src); // Returns whether insertion took place. const auto insert_slot = [this](slot_type* src_slot) { return PolicyTraits::apply(InsertSlot{*this, std::move(*src_slot)}, PolicyTraits::element(src_slot)) .second; }; if (src.is_soo()) { if (src.empty()) return; if (insert_slot(src.soo_slot())) src.common().set_empty_soo(); return; } for (auto it = src.begin(), e = src.end(); it != e;) { auto next = std::next(it); if (insert_slot(it.slot())) src.erase_meta_only(it); it = next; } } template void merge(raw_hash_set&& src) { merge(src); } node_type extract(const_iterator position) { AssertIsFull(position.control(), position.inner_.generation(), position.inner_.generation_ptr(), "extract()"); auto node = CommonAccess::Transfer(alloc_ref(), position.slot()); if (is_soo()) { common().set_empty_soo(); } else { erase_meta_only(position); } return node; } template < class K = key_type, typename std::enable_if::value, int>::type = 0> node_type extract(const key_arg& key) { auto it = find(key); return it == end() ? node_type() : extract(const_iterator{it}); } void swap(raw_hash_set& that) noexcept( IsNoThrowSwappable() && IsNoThrowSwappable() && IsNoThrowSwappable( typename AllocTraits::propagate_on_container_swap{})) { using std::swap; swap_common(that); swap(hash_ref(), that.hash_ref()); swap(eq_ref(), that.eq_ref()); SwapAlloc(alloc_ref(), that.alloc_ref(), typename AllocTraits::propagate_on_container_swap{}); } void rehash(size_t n) { const size_t cap = capacity(); if (n == 0) { if (cap == 0 || is_soo()) return; if (empty()) { ClearBackingArray(common(), GetPolicyFunctions(), /*reuse=*/false, SooEnabled()); return; } if (fits_in_soo(size())) { // When the table is already sampled, we keep it sampled. if (infoz().IsSampled()) { const size_t kInitialSampledCapacity = NextCapacity(SooCapacity()); if (capacity() > kInitialSampledCapacity) { resize(kInitialSampledCapacity); } // This asserts that we didn't lose sampling coverage in `resize`. assert(infoz().IsSampled()); return; } alignas(slot_type) unsigned char slot_space[sizeof(slot_type)]; slot_type* tmp_slot = to_slot(slot_space); transfer(tmp_slot, begin().slot()); ClearBackingArray(common(), GetPolicyFunctions(), /*reuse=*/false, SooEnabled()); transfer(soo_slot(), tmp_slot); common().set_full_soo(); return; } } // bitor is a faster way of doing `max` here. We will round up to the next // power-of-2-minus-1, so bitor is good enough. auto m = NormalizeCapacity(n | GrowthToLowerboundCapacity(size())); // n == 0 unconditionally rehashes as per the standard. if (n == 0 || m > cap) { resize(m); // This is after resize, to ensure that we have completed the allocation // and have potentially sampled the hashtable. infoz().RecordReservation(n); } } void reserve(size_t n) { const size_t max_size_before_growth = is_soo() ? SooCapacity() : size() + growth_left(); if (n > max_size_before_growth) { size_t m = GrowthToLowerboundCapacity(n); resize(NormalizeCapacity(m)); // This is after resize, to ensure that we have completed the allocation // and have potentially sampled the hashtable. infoz().RecordReservation(n); } common().reset_reserved_growth(n); common().set_reservation_size(n); } // Extension API: support for heterogeneous keys. // // std::unordered_set s; // // Turns "abc" into std::string. // s.count("abc"); // // ch_set s; // // Uses "abc" directly without copying it into std::string. // s.count("abc"); template size_t count(const key_arg& key) const { return find(key) == end() ? 0 : 1; } // Issues CPU prefetch instructions for the memory needed to find or insert // a key. Like all lookup functions, this support heterogeneous keys. // // NOTE: This is a very low level operation and should not be used without // specific benchmarks indicating its importance. template void prefetch(const key_arg& key) const { if (SooEnabled() ? is_soo() : capacity() == 0) return; (void)key; // Avoid probing if we won't be able to prefetch the addresses received. #ifdef ABSL_HAVE_PREFETCH prefetch_heap_block(); auto seq = probe(common(), hash_ref()(key)); PrefetchToLocalCache(control() + seq.offset()); PrefetchToLocalCache(slot_array() + seq.offset()); #endif // ABSL_HAVE_PREFETCH } // The API of find() has two extensions. // // 1. The hash can be passed by the user. It must be equal to the hash of the // key. // // 2. The type of the key argument doesn't have to be key_type. This is so // called heterogeneous key support. template iterator find(const key_arg& key, size_t hash) ABSL_ATTRIBUTE_LIFETIME_BOUND { AssertHashEqConsistent(key); if (is_soo()) return find_soo(key); return find_non_soo(key, hash); } template iterator find(const key_arg& key) ABSL_ATTRIBUTE_LIFETIME_BOUND { AssertHashEqConsistent(key); if (is_soo()) return find_soo(key); prefetch_heap_block(); return find_non_soo(key, hash_ref()(key)); } template const_iterator find(const key_arg& key, size_t hash) const ABSL_ATTRIBUTE_LIFETIME_BOUND { return const_cast(this)->find(key, hash); } template const_iterator find(const key_arg& key) const ABSL_ATTRIBUTE_LIFETIME_BOUND { return const_cast(this)->find(key); } template bool contains(const key_arg& key) const { // Here neither the iterator returned by `find()` nor `end()` can be invalid // outside of potential thread-safety issues. // `find()`'s return value is constructed, used, and then destructed // all in this context. return !find(key).unchecked_equals(end()); } template std::pair equal_range(const key_arg& key) ABSL_ATTRIBUTE_LIFETIME_BOUND { auto it = find(key); if (it != end()) return {it, std::next(it)}; return {it, it}; } template std::pair equal_range( const key_arg& key) const ABSL_ATTRIBUTE_LIFETIME_BOUND { auto it = find(key); if (it != end()) return {it, std::next(it)}; return {it, it}; } size_t bucket_count() const { return capacity(); } float load_factor() const { return capacity() ? static_cast(size()) / capacity() : 0.0; } float max_load_factor() const { return 1.0f; } void max_load_factor(float) { // Does nothing. } hasher hash_function() const { return hash_ref(); } key_equal key_eq() const { return eq_ref(); } allocator_type get_allocator() const { return alloc_ref(); } friend bool operator==(const raw_hash_set& a, const raw_hash_set& b) { if (a.size() != b.size()) return false; const raw_hash_set* outer = &a; const raw_hash_set* inner = &b; if (outer->capacity() > inner->capacity()) std::swap(outer, inner); for (const value_type& elem : *outer) { auto it = PolicyTraits::apply(FindElement{*inner}, elem); if (it == inner->end() || !(*it == elem)) return false; } return true; } friend bool operator!=(const raw_hash_set& a, const raw_hash_set& b) { return !(a == b); } template friend typename std::enable_if::value, H>::type AbslHashValue(H h, const raw_hash_set& s) { return H::combine(H::combine_unordered(std::move(h), s.begin(), s.end()), s.size()); } friend void swap(raw_hash_set& a, raw_hash_set& b) noexcept(noexcept(a.swap(b))) { a.swap(b); } private: template friend struct absl::container_internal::hashtable_debug_internal:: HashtableDebugAccess; friend struct absl::container_internal::HashtableFreeFunctionsAccess; struct FindElement { template const_iterator operator()(const K& key, Args&&...) const { return s.find(key); } const raw_hash_set& s; }; struct HashElement { template size_t operator()(const K& key, Args&&...) const { return h(key); } const hasher& h; }; template struct EqualElement { template bool operator()(const K2& lhs, Args&&...) const { return eq(lhs, rhs); } const K1& rhs; const key_equal& eq; }; struct EmplaceDecomposable { template std::pair operator()(const K& key, Args&&... args) const { auto res = s.find_or_prepare_insert(key); if (res.second) { s.emplace_at(res.first, std::forward(args)...); } return res; } raw_hash_set& s; }; template struct InsertSlot { template std::pair operator()(const K& key, Args&&...) && { auto res = s.find_or_prepare_insert(key); if (res.second) { s.transfer(res.first.slot(), &slot); } else if (do_destroy) { s.destroy(&slot); } return res; } raw_hash_set& s; // Constructed slot. Either moved into place or destroyed. slot_type&& slot; }; // TODO(b/303305702): re-enable reentrant validation. template inline void construct(slot_type* slot, Args&&... args) { PolicyTraits::construct(&alloc_ref(), slot, std::forward(args)...); } inline void destroy(slot_type* slot) { PolicyTraits::destroy(&alloc_ref(), slot); } inline void transfer(slot_type* to, slot_type* from) { PolicyTraits::transfer(&alloc_ref(), to, from); } // TODO(b/289225379): consider having a helper class that has the impls for // SOO functionality. template iterator find_soo(const key_arg& key) { assert(is_soo()); return empty() || !PolicyTraits::apply(EqualElement{key, eq_ref()}, PolicyTraits::element(soo_slot())) ? end() : soo_iterator(); } template iterator find_non_soo(const key_arg& key, size_t hash) { assert(!is_soo()); auto seq = probe(common(), hash); const ctrl_t* ctrl = control(); while (true) { Group g{ctrl + seq.offset()}; for (uint32_t i : g.Match(H2(hash))) { if (ABSL_PREDICT_TRUE(PolicyTraits::apply( EqualElement{key, eq_ref()}, PolicyTraits::element(slot_array() + seq.offset(i))))) return iterator_at(seq.offset(i)); } if (ABSL_PREDICT_TRUE(g.MaskEmpty())) return end(); seq.next(); assert(seq.index() <= capacity() && "full table!"); } } // Conditionally samples hashtablez for SOO tables. This should be called on // insertion into an empty SOO table and in copy construction when the size // can fit in SOO capacity. inline HashtablezInfoHandle try_sample_soo() { assert(is_soo()); if (!ShouldSampleHashtablezInfo()) return HashtablezInfoHandle{}; return Sample(sizeof(slot_type), sizeof(key_type), sizeof(value_type), SooCapacity()); } inline void destroy_slots() { assert(!is_soo()); if (PolicyTraits::template destroy_is_trivial()) return; IterateOverFullSlots( common(), slot_array(), [&](const ctrl_t*, slot_type* slot) ABSL_ATTRIBUTE_ALWAYS_INLINE { this->destroy(slot); }); } inline void dealloc() { assert(capacity() != 0); // Unpoison before returning the memory to the allocator. SanitizerUnpoisonMemoryRegion(slot_array(), sizeof(slot_type) * capacity()); infoz().Unregister(); Deallocate( &alloc_ref(), common().backing_array_start(), common().alloc_size(sizeof(slot_type), alignof(slot_type))); } inline void destructor_impl() { if (capacity() == 0) return; if (is_soo()) { if (!empty()) { ABSL_SWISSTABLE_IGNORE_UNINITIALIZED(destroy(soo_slot())); } return; } destroy_slots(); dealloc(); } // Erases, but does not destroy, the value pointed to by `it`. // // This merely updates the pertinent control byte. This can be used in // conjunction with Policy::transfer to move the object to another place. void erase_meta_only(const_iterator it) { assert(!is_soo()); EraseMetaOnly(common(), static_cast(it.control() - control()), sizeof(slot_type)); } size_t hash_of(slot_type* slot) const { return PolicyTraits::apply(HashElement{hash_ref()}, PolicyTraits::element(slot)); } // Resizes table to the new capacity and move all elements to the new // positions accordingly. // // Note that for better performance instead of // find_first_non_full(common(), hash), // HashSetResizeHelper::FindFirstNonFullAfterResize( // common(), old_capacity, hash) // can be called right after `resize`. void resize(size_t new_capacity) { raw_hash_set::resize_impl(common(), new_capacity, HashtablezInfoHandle{}); } // As above, except that we also accept a pre-sampled, forced infoz for // SOO tables, since they need to switch from SOO to heap in order to // store the infoz. void resize_with_soo_infoz(HashtablezInfoHandle forced_infoz) { assert(forced_infoz.IsSampled()); raw_hash_set::resize_impl(common(), NextCapacity(SooCapacity()), forced_infoz); } // Resizes set to the new capacity. // It is a static function in order to use its pointer in GetPolicyFunctions. ABSL_ATTRIBUTE_NOINLINE static void resize_impl( CommonFields& common, size_t new_capacity, HashtablezInfoHandle forced_infoz) { raw_hash_set* set = reinterpret_cast(&common); assert(IsValidCapacity(new_capacity)); assert(!set->fits_in_soo(new_capacity)); const bool was_soo = set->is_soo(); const bool had_soo_slot = was_soo && !set->empty(); const ctrl_t soo_slot_h2 = had_soo_slot ? static_cast(H2(set->hash_of(set->soo_slot()))) : ctrl_t::kEmpty; HashSetResizeHelper resize_helper(common, was_soo, had_soo_slot, forced_infoz); // Initialize HashSetResizeHelper::old_heap_or_soo_. We can't do this in // HashSetResizeHelper constructor because it can't transfer slots when // transfer_uses_memcpy is false. // TODO(b/289225379): try to handle more of the SOO cases inside // InitializeSlots. See comment on cl/555990034 snapshot #63. if (PolicyTraits::transfer_uses_memcpy() || !had_soo_slot) { resize_helper.old_heap_or_soo() = common.heap_or_soo(); } else { set->transfer(set->to_slot(resize_helper.old_soo_data()), set->soo_slot()); } common.set_capacity(new_capacity); // Note that `InitializeSlots` does different number initialization steps // depending on the values of `transfer_uses_memcpy` and capacities. // Refer to the comment in `InitializeSlots` for more details. const bool grow_single_group = resize_helper.InitializeSlots( common, CharAlloc(set->alloc_ref()), soo_slot_h2, sizeof(key_type), sizeof(value_type)); // In the SooEnabled() case, capacity is never 0 so we don't check. if (!SooEnabled() && resize_helper.old_capacity() == 0) { // InitializeSlots did all the work including infoz().RecordRehash(). return; } assert(resize_helper.old_capacity() > 0); // Nothing more to do in this case. if (was_soo && !had_soo_slot) return; slot_type* new_slots = set->slot_array(); if (grow_single_group) { if (PolicyTraits::transfer_uses_memcpy()) { // InitializeSlots did all the work. return; } if (was_soo) { set->transfer(new_slots + resize_helper.SooSlotIndex(), to_slot(resize_helper.old_soo_data())); return; } else { // We want GrowSizeIntoSingleGroup to be called here in order to make // InitializeSlots not depend on PolicyTraits. resize_helper.GrowSizeIntoSingleGroup(common, set->alloc_ref()); } } else { // InitializeSlots prepares control bytes to correspond to empty table. const auto insert_slot = [&](slot_type* slot) { size_t hash = PolicyTraits::apply(HashElement{set->hash_ref()}, PolicyTraits::element(slot)); auto target = find_first_non_full(common, hash); SetCtrl(common, target.offset, H2(hash), sizeof(slot_type)); set->transfer(new_slots + target.offset, slot); return target.probe_length; }; if (was_soo) { insert_slot(to_slot(resize_helper.old_soo_data())); return; } else { auto* old_slots = static_cast(resize_helper.old_slots()); size_t total_probe_length = 0; for (size_t i = 0; i != resize_helper.old_capacity(); ++i) { if (IsFull(resize_helper.old_ctrl()[i])) { total_probe_length += insert_slot(old_slots + i); } } common.infoz().RecordRehash(total_probe_length); } } resize_helper.DeallocateOld(CharAlloc(set->alloc_ref()), sizeof(slot_type)); } // Casting directly from e.g. char* to slot_type* can cause compilation errors // on objective-C. This function converts to void* first, avoiding the issue. static slot_type* to_slot(void* buf) { return static_cast(buf); } // Requires that lhs does not have a full SOO slot. static void move_common(bool that_is_full_soo, allocator_type& rhs_alloc, CommonFields& lhs, CommonFields&& rhs) { if (PolicyTraits::transfer_uses_memcpy() || !that_is_full_soo) { lhs = std::move(rhs); } else { lhs.move_non_heap_or_soo_fields(rhs); // TODO(b/303305702): add reentrancy guard. PolicyTraits::transfer(&rhs_alloc, to_slot(lhs.soo_data()), to_slot(rhs.soo_data())); } } // Swaps common fields making sure to avoid memcpy'ing a full SOO slot if we // aren't allowed to do so. void swap_common(raw_hash_set& that) { using std::swap; if (PolicyTraits::transfer_uses_memcpy()) { swap(common(), that.common()); return; } CommonFields tmp = CommonFields::CreateDefault(); const bool that_is_full_soo = that.is_full_soo(); move_common(that_is_full_soo, that.alloc_ref(), tmp, std::move(that.common())); move_common(is_full_soo(), alloc_ref(), that.common(), std::move(common())); move_common(that_is_full_soo, that.alloc_ref(), common(), std::move(tmp)); } void maybe_increment_generation_or_rehash_on_move() { if (!SwisstableGenerationsEnabled() || capacity() == 0 || is_soo()) { return; } common().increment_generation(); if (!empty() && common().should_rehash_for_bug_detection_on_move()) { resize(capacity()); } } template raw_hash_set& assign_impl(raw_hash_set&& that) { // We don't bother checking for this/that aliasing. We just need to avoid // breaking the invariants in that case. destructor_impl(); move_common(that.is_full_soo(), that.alloc_ref(), common(), std::move(that.common())); // TODO(b/296061262): move instead of copying hash/eq/alloc. hash_ref() = that.hash_ref(); eq_ref() = that.eq_ref(); CopyAlloc(alloc_ref(), that.alloc_ref(), std::integral_constant()); that.common() = CommonFields::CreateDefault(); maybe_increment_generation_or_rehash_on_move(); return *this; } raw_hash_set& move_elements_allocs_unequal(raw_hash_set&& that) { const size_t size = that.size(); if (size == 0) return *this; reserve(size); for (iterator it = that.begin(); it != that.end(); ++it) { insert(std::move(PolicyTraits::element(it.slot()))); that.destroy(it.slot()); } if (!that.is_soo()) that.dealloc(); that.common() = CommonFields::CreateDefault(); maybe_increment_generation_or_rehash_on_move(); return *this; } raw_hash_set& move_assign(raw_hash_set&& that, std::true_type /*propagate_alloc*/) { return assign_impl(std::move(that)); } raw_hash_set& move_assign(raw_hash_set&& that, std::false_type /*propagate_alloc*/) { if (alloc_ref() == that.alloc_ref()) { return assign_impl(std::move(that)); } // Aliasing can't happen here because allocs would compare equal above. assert(this != &that); destructor_impl(); // We can't take over that's memory so we need to move each element. // While moving elements, this should have that's hash/eq so copy hash/eq // before moving elements. // TODO(b/296061262): move instead of copying hash/eq. hash_ref() = that.hash_ref(); eq_ref() = that.eq_ref(); return move_elements_allocs_unequal(std::move(that)); } template std::pair find_or_prepare_insert_soo(const K& key) { if (empty()) { const HashtablezInfoHandle infoz = try_sample_soo(); if (infoz.IsSampled()) { resize_with_soo_infoz(infoz); } else { common().set_full_soo(); return {soo_iterator(), true}; } } else if (PolicyTraits::apply(EqualElement{key, eq_ref()}, PolicyTraits::element(soo_slot()))) { return {soo_iterator(), false}; } else { resize(NextCapacity(SooCapacity())); } const size_t index = PrepareInsertAfterSoo(hash_ref()(key), sizeof(slot_type), common()); return {iterator_at(index), true}; } template std::pair find_or_prepare_insert_non_soo(const K& key) { assert(!is_soo()); prefetch_heap_block(); auto hash = hash_ref()(key); auto seq = probe(common(), hash); const ctrl_t* ctrl = control(); while (true) { Group g{ctrl + seq.offset()}; for (uint32_t i : g.Match(H2(hash))) { if (ABSL_PREDICT_TRUE(PolicyTraits::apply( EqualElement{key, eq_ref()}, PolicyTraits::element(slot_array() + seq.offset(i))))) return {iterator_at(seq.offset(i)), false}; } auto mask_empty = g.MaskEmpty(); if (ABSL_PREDICT_TRUE(mask_empty)) { size_t target = seq.offset( GetInsertionOffset(mask_empty, capacity(), hash, control())); return {iterator_at(PrepareInsertNonSoo(common(), hash, FindInfo{target, seq.index()}, GetPolicyFunctions())), true}; } seq.next(); assert(seq.index() <= capacity() && "full table!"); } } protected: // Asserts that hash and equal functors provided by the user are consistent, // meaning that `eq(k1, k2)` implies `hash(k1)==hash(k2)`. template void AssertHashEqConsistent(ABSL_ATTRIBUTE_UNUSED const K& key) { #ifndef NDEBUG if (empty()) return; const size_t hash_of_arg = hash_ref()(key); const auto assert_consistent = [&](const ctrl_t*, slot_type* slot) { const value_type& element = PolicyTraits::element(slot); const bool is_key_equal = PolicyTraits::apply(EqualElement{key, eq_ref()}, element); if (!is_key_equal) return; const size_t hash_of_slot = PolicyTraits::apply(HashElement{hash_ref()}, element); const bool is_hash_equal = hash_of_arg == hash_of_slot; if (!is_hash_equal) { // In this case, we're going to crash. Do a couple of other checks for // idempotence issues. Recalculating hash/eq here is also convenient for // debugging with gdb/lldb. const size_t once_more_hash_arg = hash_ref()(key); assert(hash_of_arg == once_more_hash_arg && "hash is not idempotent."); const size_t once_more_hash_slot = PolicyTraits::apply(HashElement{hash_ref()}, element); assert(hash_of_slot == once_more_hash_slot && "hash is not idempotent."); const bool once_more_eq = PolicyTraits::apply(EqualElement{key, eq_ref()}, element); assert(is_key_equal == once_more_eq && "equality is not idempotent."); } assert((!is_key_equal || is_hash_equal) && "eq(k1, k2) must imply that hash(k1) == hash(k2). " "hash/eq functors are inconsistent."); }; if (is_soo()) { assert_consistent(/*unused*/ nullptr, soo_slot()); return; } // We only do validation for small tables so that it's constant time. if (capacity() > 16) return; IterateOverFullSlots(common(), slot_array(), assert_consistent); #endif } // Attempts to find `key` in the table; if it isn't found, returns an iterator // where the value can be inserted into, with the control byte already set to // `key`'s H2. Returns a bool indicating whether an insertion can take place. template std::pair find_or_prepare_insert(const K& key) { AssertHashEqConsistent(key); if (is_soo()) return find_or_prepare_insert_soo(key); return find_or_prepare_insert_non_soo(key); } // Constructs the value in the space pointed by the iterator. This only works // after an unsuccessful find_or_prepare_insert() and before any other // modifications happen in the raw_hash_set. // // PRECONDITION: iter was returned from find_or_prepare_insert(k), where k is // the key decomposed from `forward(args)...`, and the bool returned by // find_or_prepare_insert(k) was true. // POSTCONDITION: *m.iterator_at(i) == value_type(forward(args)...). template void emplace_at(iterator iter, Args&&... args) { construct(iter.slot(), std::forward(args)...); assert(PolicyTraits::apply(FindElement{*this}, *iter) == iter && "constructed value does not match the lookup key"); } iterator iterator_at(size_t i) ABSL_ATTRIBUTE_LIFETIME_BOUND { return {control() + i, slot_array() + i, common().generation_ptr()}; } const_iterator iterator_at(size_t i) const ABSL_ATTRIBUTE_LIFETIME_BOUND { return const_cast(this)->iterator_at(i); } reference unchecked_deref(iterator it) { return it.unchecked_deref(); } private: friend struct RawHashSetTestOnlyAccess; // The number of slots we can still fill without needing to rehash. // // This is stored separately due to tombstones: we do not include tombstones // in the growth capacity, because we'd like to rehash when the table is // otherwise filled with tombstones: otherwise, probe sequences might get // unacceptably long without triggering a rehash. Callers can also force a // rehash via the standard `rehash(0)`, which will recompute this value as a // side-effect. // // See `CapacityToGrowth()`. size_t growth_left() const { assert(!is_soo()); return common().growth_left(); } GrowthInfo& growth_info() { assert(!is_soo()); return common().growth_info(); } GrowthInfo growth_info() const { assert(!is_soo()); return common().growth_info(); } // Prefetch the heap-allocated memory region to resolve potential TLB and // cache misses. This is intended to overlap with execution of calculating the // hash for a key. void prefetch_heap_block() const { assert(!is_soo()); #if ABSL_HAVE_BUILTIN(__builtin_prefetch) || defined(__GNUC__) __builtin_prefetch(control(), 0, 1); #endif } CommonFields& common() { return settings_.template get<0>(); } const CommonFields& common() const { return settings_.template get<0>(); } ctrl_t* control() const { assert(!is_soo()); return common().control(); } slot_type* slot_array() const { assert(!is_soo()); return static_cast(common().slot_array()); } slot_type* soo_slot() { assert(is_soo()); return static_cast(common().soo_data()); } const slot_type* soo_slot() const { return const_cast(this)->soo_slot(); } iterator soo_iterator() { return {SooControl(), soo_slot(), common().generation_ptr()}; } const_iterator soo_iterator() const { return const_cast(this)->soo_iterator(); } HashtablezInfoHandle infoz() { assert(!is_soo()); return common().infoz(); } hasher& hash_ref() { return settings_.template get<1>(); } const hasher& hash_ref() const { return settings_.template get<1>(); } key_equal& eq_ref() { return settings_.template get<2>(); } const key_equal& eq_ref() const { return settings_.template get<2>(); } allocator_type& alloc_ref() { return settings_.template get<3>(); } const allocator_type& alloc_ref() const { return settings_.template get<3>(); } static const void* get_hash_ref_fn(const CommonFields& common) { auto* h = reinterpret_cast(&common); return &h->hash_ref(); } static void transfer_slot_fn(void* set, void* dst, void* src) { auto* h = static_cast(set); h->transfer(static_cast(dst), static_cast(src)); } // Note: dealloc_fn will only be used if we have a non-standard allocator. static void dealloc_fn(CommonFields& common, const PolicyFunctions&) { auto* set = reinterpret_cast(&common); // Unpoison before returning the memory to the allocator. SanitizerUnpoisonMemoryRegion(common.slot_array(), sizeof(slot_type) * common.capacity()); common.infoz().Unregister(); Deallocate( &set->alloc_ref(), common.backing_array_start(), common.alloc_size(sizeof(slot_type), alignof(slot_type))); } static const PolicyFunctions& GetPolicyFunctions() { static constexpr PolicyFunctions value = { sizeof(slot_type), // TODO(b/328722020): try to type erase // for standard layout and alignof(Hash) <= alignof(CommonFields). std::is_empty::value ? &GetHashRefForEmptyHasher : &raw_hash_set::get_hash_ref_fn, PolicyTraits::template get_hash_slot_fn(), PolicyTraits::transfer_uses_memcpy() ? TransferRelocatable : &raw_hash_set::transfer_slot_fn, (std::is_same>::value ? &DeallocateStandard : &raw_hash_set::dealloc_fn), &raw_hash_set::resize_impl, }; return value; } // Bundle together CommonFields plus other objects which might be empty. // CompressedTuple will ensure that sizeof is not affected by any of the empty // fields that occur after CommonFields. absl::container_internal::CompressedTuple settings_{CommonFields::CreateDefault(), hasher{}, key_equal{}, allocator_type{}}; }; // Friend access for free functions in raw_hash_set.h. struct HashtableFreeFunctionsAccess { template static typename Set::size_type EraseIf(Predicate& pred, Set* c) { if (c->empty()) { return 0; } if (c->is_soo()) { auto it = c->soo_iterator(); if (!pred(*it)) { assert(c->size() == 1 && "hash table was modified unexpectedly"); return 0; } c->destroy(it.slot()); c->common().set_empty_soo(); return 1; } ABSL_ATTRIBUTE_UNUSED const size_t original_size_for_assert = c->size(); size_t num_deleted = 0; IterateOverFullSlots( c->common(), c->slot_array(), [&](const ctrl_t* ctrl, auto* slot) { if (pred(Set::PolicyTraits::element(slot))) { c->destroy(slot); EraseMetaOnly(c->common(), static_cast(ctrl - c->control()), sizeof(*slot)); ++num_deleted; } }); // NOTE: IterateOverFullSlots allow removal of the current element, so we // verify the size additionally here. assert(original_size_for_assert - num_deleted == c->size() && "hash table was modified unexpectedly"); return num_deleted; } template static void ForEach(Callback& cb, Set* c) { if (c->empty()) { return; } if (c->is_soo()) { cb(*c->soo_iterator()); return; } using ElementTypeWithConstness = decltype(*c->begin()); IterateOverFullSlots( c->common(), c->slot_array(), [&cb](const ctrl_t*, auto* slot) { ElementTypeWithConstness& element = Set::PolicyTraits::element(slot); cb(element); }); } }; // Erases all elements that satisfy the predicate `pred` from the container `c`. template typename raw_hash_set::size_type EraseIf( Predicate& pred, raw_hash_set* c) { return HashtableFreeFunctionsAccess::EraseIf(pred, c); } // Calls `cb` for all elements in the container `c`. template void ForEach(Callback& cb, raw_hash_set* c) { return HashtableFreeFunctionsAccess::ForEach(cb, c); } template void ForEach(Callback& cb, const raw_hash_set* c) { return HashtableFreeFunctionsAccess::ForEach(cb, c); } namespace hashtable_debug_internal { template struct HashtableDebugAccess> { using Traits = typename Set::PolicyTraits; using Slot = typename Traits::slot_type; static size_t GetNumProbes(const Set& set, const typename Set::key_type& key) { if (set.is_soo()) return 0; size_t num_probes = 0; size_t hash = set.hash_ref()(key); auto seq = probe(set.common(), hash); const ctrl_t* ctrl = set.control(); while (true) { container_internal::Group g{ctrl + seq.offset()}; for (uint32_t i : g.Match(container_internal::H2(hash))) { if (Traits::apply( typename Set::template EqualElement{ key, set.eq_ref()}, Traits::element(set.slot_array() + seq.offset(i)))) return num_probes; ++num_probes; } if (g.MaskEmpty()) return num_probes; seq.next(); ++num_probes; } } static size_t AllocatedByteSize(const Set& c) { size_t capacity = c.capacity(); if (capacity == 0) return 0; size_t m = c.is_soo() ? 0 : c.common().alloc_size(sizeof(Slot), alignof(Slot)); size_t per_slot = Traits::space_used(static_cast(nullptr)); if (per_slot != ~size_t{}) { m += per_slot * c.size(); } else { for (auto it = c.begin(); it != c.end(); ++it) { m += Traits::space_used(it.slot()); } } return m; } }; } // namespace hashtable_debug_internal } // namespace container_internal ABSL_NAMESPACE_END } // namespace absl #undef ABSL_SWISSTABLE_ENABLE_GENERATIONS #undef ABSL_SWISSTABLE_IGNORE_UNINITIALIZED #undef ABSL_SWISSTABLE_IGNORE_UNINITIALIZED_RETURN #endif // ABSL_CONTAINER_INTERNAL_RAW_HASH_SET_H_