Cauchy Shwartz Inequality
\left( \sum_{k=1}^n a_k b_k \right)^2 \leq \left( \sum_{k=1}^n a_k^2 \right) \left( \sum_{k=1}^n b_k^2 \right) (k=1nakbk)2(k=1nak2)(k=1nbk2)
Cross Product
\mathbf{V}_1 \times \mathbf{V}_2 = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial X}{\partial u} & \frac{\partial Y}{\partial u} & 0 \\ \frac{\partial X}{\partial v} & \frac{\partial Y}{\partial v} & 0 \end{vmatrix} 𝐕1×𝐕2=|𝐢𝐣𝐤XuYu0XvYv0|
Lorenz Eqautions
\begin{aligned} \dot{x} & = \sigma(y-x) \\ \dot{y} & = \rho x - y - xz \\ \dot{z} & = -\beta z + xy \end{aligned} x˙=σ(yx)y˙=ρxyxzz˙=βz+xy
Maxwell Equations
\begin{aligned} \nabla \times \vec{\mathbf{B}} - \frac1c\, \frac{\partial\vec{ \mathbf{E}}}{\partial t} & = \frac{4\pi}{c}\vec{\mathbf{j}} \\ \nabla \cdot \vec{\mathbf{E}} & = 4 \pi \rho \\ \nabla \times \vec{\mathbf{E}}\, +\, \frac1c\, \frac{\partial\vec{ \mathbf{B}}}{\partial t} & = \vec{\mathbf{0}} \\ \nabla \cdot \vec{\mathbf{B}} & = 0 \end{aligned} ×𝐁1c𝐄t=4πc𝐣𝐄=4πρ×𝐄+1c𝐁t=𝟎𝐁=0
N Choose K
P(E) = \binom{n}{k} p^k (1-p)^{ n-k} \ P(E)=(nk)pk(1p)nk 
Ramanujan Identity
\frac{1}{\Bigl(\sqrt{\phi \sqrt{5}}- \phi\Bigr) e^{\frac25 \pi}} = 1+\frac{e^{-2\pi}} {1+\frac{e^{-4\pi}} {1+\frac{e^{-6\pi}} {1+\frac{e^{-8\pi}} {1+\ldots} } } } 1(ϕ5ϕ)e25π=1+e2π1+e4π1+e6π1+e8π1+
Rogers Ramanujan Identity
1 + \frac{q^2}{(1-q)}+ \frac{q^6}{(1-q)(1-q^2)}+\cdots = \prod_{j=0}^{\infty}\frac{1} {(1-q^{5j+2})(1-q^{5j+3})}, \quad\quad \text{for} |q|<1. 1+q2(1q)+q6(1q)(1q2)+=j=01(1q5j+2)(1q5j+3),for|q|<1.