Cauchy Shwartz Inequality |
---|
\left( \sum_{k=1}^n a_k b_k \right)^2
\leq \left( \sum_{k=1}^n a_k^2 \right)
\left( \sum_{k=1}^n b_k^2 \right)
| |
Cross Product |
---|
\mathbf{V}_1 \times \mathbf{V}_2 =
\begin{vmatrix}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\frac{\partial X}{\partial u} &
\frac{\partial Y}{\partial u} & 0 \\
\frac{\partial X}{\partial v} &
\frac{\partial Y}{\partial v} & 0
\end{vmatrix}
| |
Lorenz Eqautions |
---|
\begin{aligned}
\dot{x} & = \sigma(y-x) \\
\dot{y} & = \rho x - y - xz \\
\dot{z} & = -\beta z + xy
\end{aligned}
| |
Maxwell Equations |
---|
\begin{aligned}
\nabla \times \vec{\mathbf{B}} -
\frac1c\, \frac{\partial\vec{
\mathbf{E}}}{\partial t} &
= \frac{4\pi}{c}\vec{\mathbf{j}} \\
\nabla \cdot \vec{\mathbf{E}} &
= 4 \pi \rho \\
\nabla \times \vec{\mathbf{E}}\, +\,
\frac1c\, \frac{\partial\vec{
\mathbf{B}}}{\partial t} &
= \vec{\mathbf{0}} \\
\nabla \cdot \vec{\mathbf{B}} &
= 0
\end{aligned}
| |
N Choose K |
---|
P(E) = \binom{n}{k} p^k (1-p)^{ n-k} \
| |
Ramanujan Identity |
---|
\frac{1}{\Bigl(\sqrt{\phi \sqrt{5}}-
\phi\Bigr) e^{\frac25 \pi}} =
1+\frac{e^{-2\pi}} {1+\frac{e^{-4\pi}}
{1+\frac{e^{-6\pi}}
{1+\frac{e^{-8\pi}} {1+\ldots} } } }
| |
Rogers Ramanujan Identity |
---|
1 + \frac{q^2}{(1-q)}+
\frac{q^6}{(1-q)(1-q^2)}+\cdots =
\prod_{j=0}^{\infty}\frac{1}
{(1-q^{5j+2})(1-q^{5j+3})},
\quad\quad \text{for} |q|<1.
| |