Differentials |
---|
\bigg(\frac{\partial^2} {\partial x^2} + \frac {\partial^2}{\partial y^2} \bigg){\big\lvert\varphi (x+iy)\big\rvert}^2 | |
Environments |
---|
f(x) = \begin{cases}1/3 & \text{if }0 \le x \le 1; \\ 2/3 & \text{if }3\le x \le 4;\\ 0 &\text{elsewhere.} \end{cases} | |
\begin{pmatrix}
\begin{pmatrix}a&b\\c&d
\end{pmatrix} &
\begin{pmatrix}e&f\\g&h
\end{pmatrix} \\ 0 &
\begin{pmatrix}i&j\\k&l
\end{pmatrix}
\end{pmatrix} | |
\det\begin{vmatrix}
c_0&c_1&c_2&\dots& c_n\\
c_1 & c_2 & c_3 & \dots &
c_{n+1}\\ c_2 & c_3 & c_4
&\dots & c_{n+2}\\ \vdots
&\vdots&\vdots & &\vdots
\\c_n & c_{n+1} & c_{n+2}
&\dots&c_{2n}
\end{vmatrix} > 0 | |
Everything |
---|
\sum_{p\text{ prime}} f(p)=\int_{t>1} f(t)d\pi(t) | |
\lim_{n \to +\infty} \frac{\sqrt{2\pi n}}{n!} \genfrac (){}{}n{e}^n = 1 | |
\det(A) = \sum_{\sigma \in S_n} \epsilon(\sigma) \prod_{i=1}^n a_{i, \sigma_i} | |
Fractions |
---|
\frac{x+y^2}{k+1} | |
x+y^\frac{2}{k + 1} | |
\frac{a}{b/2} | |
a_0 + \cfrac{1}{a_1 + \cfrac{1}{a_2 + \cfrac{1}{a_3 + \cfrac{1}{a_4}}}} | |
a_0+\frac{1}{a_1+\frac{1}{a_2+\frac{1}{a_3+ \frac{1}{a_4}}}} | |
\binom{p}{2} x^2 y^{p-2} - \frac{1}{1-x} \frac{1}{1-x^2} | |
Integrals |
---|
\int_1^x \frac{dt}{t} | |
\int\!\!\!\int_D dx,dy | |
Over Under Braces |
---|
\overbrace{x +\cdots + x} ^{k \text{ times}} | |
{\underbrace{\overbrace{ \mathstrut a,\dots,a}^{k ,a\rq\text{s}}, \overbrace{ \mathstrut b,\dots,b}^{l, b\rq\text{s}}}_{k+l \text{ elements}}} | |
Roots |
---|
\sqrt{1+\sqrt{1+\sqrt{1+ \sqrt{1+\sqrt{1+\sqrt{1+ \sqrt{1+x}}}}}}} | |
Scripts |
---|
x^2y^2 | |
_2F_3 | |
x^{2y} | |
2^{2^{2^x}} | |
y_{x^2} | |
y_{x_2} | |
x_{92}^{31415} + \pi | |
x_{y^a_b}^{z^c_d} | |
y_3''' | |
Summations |
---|
\sum_{\genfrac{}{}{0mu}{2}{0 \le i \le m}{0 < j < n}} P(i, j) | |
\sum_{i=1}^p \sum_{j=1}^q \sum_{k=1}^r a_{ij}b_{jk}c_{ki} | |