Differentials
\bigg(\frac{\partial^2} {\partial x^2} + \frac {\partial^2}{\partial y^2} \bigg){\big\lvert\varphi (x+iy)\big\rvert}^2(2x2+2y2)|φ(x+iy)|2
Environments
f(x) = \begin{cases}1/3 & \text{if }0 \le x \le 1; \\ 2/3 & \text{if }3\le x \le 4;\\ 0 &\text{elsewhere.} \end{cases}f(x)={1/3if 0x1;2/3if 3x4;0elsewhere.
\begin{pmatrix} \begin{pmatrix}a&b\\c&d \end{pmatrix} & \begin{pmatrix}e&f\\g&h \end{pmatrix} \\ 0 & \begin{pmatrix}i&j\\k&l \end{pmatrix} \end{pmatrix}((abcd)(efgh)0(ijkl))
\det\begin{vmatrix} c_0&c_1&c_2&\dots& c_n\\ c_1 & c_2 & c_3 & \dots & c_{n+1}\\ c_2 & c_3 & c_4 &\dots & c_{n+2}\\ \vdots &\vdots&\vdots & &\vdots \\c_n & c_{n+1} & c_{n+2} &\dots&c_{2n} \end{vmatrix} > 0det|c0c1c2cnc1c2c3cn+1c2c3c4cn+2cncn+1cn+2c2n|>0
Everything
\sum_{p\text{ prime}} f(p)=\int_{t>1} f(t)d\pi(t)p primef(p)=t>1f(t)dπ(t)
\lim_{n \to +\infty} \frac{\sqrt{2\pi n}}{n!} \genfrac (){}{}n{e}^n = 1limn+2πnn!(ne)n=1
\det(A) = \sum_{\sigma \in S_n} \epsilon(\sigma) \prod_{i=1}^n a_{i, \sigma_i}det(A)=σSnϵ(σ)i=1nai,σi
Fractions
\frac{x+y^2}{k+1}x+y2k+1
x+y^\frac{2}{k + 1}x+y2k+1
\frac{a}{b/2}ab/2
a_0 + \cfrac{1}{a_1 + \cfrac{1}{a_2 + \cfrac{1}{a_3 + \cfrac{1}{a_4}}}}a0+1a1+1a2+1a3+1a4
a_0+\frac{1}{a_1+\frac{1}{a_2+\frac{1}{a_3+ \frac{1}{a_4}}}}a0+1a1+1a2+1a3+1a4
\binom{p}{2} x^2 y^{p-2} - \frac{1}{1-x} \frac{1}{1-x^2}(p2)x2yp211x11x2
Integrals
\int_1^x \frac{dt}{t}1xdtt
\int\!\!\!\int_D dx,dyDdx,dy
Over Under Braces
\overbrace{x +\cdots + x} ^{k \text{ times}}x++xk times
{\underbrace{\overbrace{ \mathstrut a,\dots,a}^{k ,a\rq\text{s}}, \overbrace{ \mathstrut b,\dots,b}^{l, b\rq\text{s}}}_{k+l \text{ elements}}} height="0.7em" />a,,ak,as, height="0.7em" />b,,bl,bsk+l elements
Roots
\sqrt{1+\sqrt{1+\sqrt{1+ \sqrt{1+\sqrt{1+\sqrt{1+ \sqrt{1+x}}}}}}}1+1+1+1+1+1+1+x
Scripts
x^2y^2x2y2
_2F_32F3
x^{2y}x2y
2^{2^{2^x}}222x
y_{x^2}yx2
y_{x_2}yx2
x_{92}^{31415} + \pix9231415+π
x_{y^a_b}^{z^c_d}xybazdc
y_3'''y3
Summations
\sum_{\genfrac{}{}{0mu}{2}{0 \le i \le m}{0 < j < n}} P(i, j)0im0<j<nP(i,j)
\sum_{i=1}^p \sum_{j=1}^q \sum_{k=1}^r a_{ij}b_{jk}c_{ki}i=1pj=1qk=1raijbjkcki