Accents And Diacritics |
---|
\dot{a}, \ddot{a}, \acute{a}, \grave{a} | |
\check{a}, \breve{a}, \tilde{a}, \bar{a} | |
\hat{a}, \widehat{a}, \vec{a} | |
Angle Brackets |
---|
\left \langle \frac{a}{b} \right \rangle | |
Arc |
---|
\overset{\frown} {AB} | |
Area Of Quadrilateral |
---|
S=dD\sin\alpha | |
Arrays |
---|
\begin{array}{||c|c::c|c||}
A & B & C & D \\ \hdashline
1 & 2 & 3 & 4 \\ \hline
5 & 6 & 7 & 8 \\
9 & 10 & 11 & 12
\end{array} | |
Arrows |
---|
\Rrightarrow, \Lleftarrow | |
\Rightarrow, \nRightarrow, \Longrightarrow, \implies | |
\Leftarrow, \nLeftarrow, \Longleftarrow | |
\Leftrightarrow, \nLeftrightarrow, \Longleftrightarrow, \iff | |
\Uparrow, \Downarrow, \Updownarrow | |
\rightarrow, \to, \nrightarrow, \longrightarrow | |
\leftarrow, \gets, \nleftarrow, \longleftarrow | |
\leftrightarrow, \nleftrightarrow, \longleftrightarrow | |
\uparrow, \downarrow, \updownarrow | |
\nearrow, \swarrow, \nwarrow, \searrow | |
\mapsto, \longmapsto | |
\rightharpoonup \rightharpoondown \leftharpoonup \leftharpoondown \upharpoonleft \upharpoonright \downharpoonleft \downharpoonright \rightleftharpoons \leftrightharpoons | |
\curvearrowleft \circlearrowleft \Lsh \upuparrows \rightrightarrows \rightleftarrows \rightarrowtail \looparrowright | |
\curvearrowright \circlearrowright \Rsh \downdownarrows \leftleftarrows \leftrightarrows \leftarrowtail \looparrowleft | |
\hookrightarrow \hookleftarrow \multimap \leftrightsquigarrow \rightsquigarrow \twoheadrightarrow \twoheadleftarrow | |
Arrows Example |
---|
A \xleftarrow{n+\mu-1} B \xrightarrow[T]{n\pm i-1} C | |
Bars And Double Bars |
---|
\left | \frac{a}{b} \right \vert | |
\left \| \frac{a}{b} \right \Vert | |
Basic |
---|
\alpha | |
f(x) = x^2 | |
\{1,e,\pi\} | |
|z| \leq 2 | |
Binomials |
---|
\binom{n}{k} | |
\tbinom{n}{k} | |
\dbinom{n}{k} | |
Blackboard Bold |
---|
\mathbb{ABCDEFGHI} | |
\mathbb{JKLMNOPQR} | |
\mathbb{STUVWXYZ} | |
Boldface |
---|
\mathbf{ABCDEFGHI} | |
\mathbf{JKLMNOPQR} | |
\mathbf{STUVWXYZ} | |
\mathbf{abcdefghijklm} | |
\mathbf{nopqrstuvwxyz} | |
\mathbf{0123456789} | |
Boldface Greek |
---|
\boldsymbol{\Alpha \Beta \Gamma \Delta \Epsilon \Zeta \Eta \Theta} | |
\boldsymbol{\Iota \Kappa \Lambda \Mu \Nu \Xi \Omicron \Pi} | |
\boldsymbol{\Rho \Sigma \Tau \Upsilon \Phi \Chi \Psi \Omega} | |
\boldsymbol{\alpha \beta \gamma \delta \epsilon \zeta \eta \theta} | |
\boldsymbol{\iota \kappa \lambda \mu \nu \xi \omicron \pi} | |
\boldsymbol{\rho \sigma \tau \upsilon \phi \chi \psi \omega} | |
\boldsymbol{\varepsilon\digamma\varkappa\varpi} | |
\boldsymbol{\varrho\varsigma\vartheta\varphi} | |
Bounds |
---|
\min x, \max y, \inf s, \sup t | |
\lim u, \liminf v, \limsup w | |
\dim p, \deg q, \det m, \ker\phi | |
Braces |
---|
\left \{ \frac{a}{b} \right \} | |
\left \lbrace \frac{a}{b} \right \rbrace | |
Brackets |
---|
\left [ \frac{a}{b} \right ] | |
\left \lbrack \frac{a}{b} \right \rbrack | |
Calligraphiy |
---|
\mathcal{ABCDEFGHI} | |
\mathcal{JKLMNOPQR} | |
\mathcal{STUVWXYZ} | |
\mathcal{abcdefghi} | |
\mathcal{jklmnopqr} | |
\mathcal{stuvwxyz} | |
Cases |
---|
f(n) =
\begin{cases}
n/2, & \text{if }n\text{ is even} \\
3n+1, & \text{if }n\text{ is odd}
\end{cases} | |
\begin{cases}
3x + 5y + z \\
7x - 2y + 4z \\
-6x + 3y + 2z
\end{cases} | |
Closed Line Or Path Integral |
---|
\oint_{(x,y)\in C} x^3\, dx + 4y^2\, dy | |
Color |
---|
{\color{Blue}x^2}+{\color{Orange}2x}-{\color{LimeGreen}1} | |
x=\frac{{\color{Blue}-b}\pm\sqrt{\color{Red}b^2-4ac}}{\color{Green}2a} | |
x\color{red}\neq y=z | |
x{\color{red}\neq} y=z | |
x\color{red}\neq\color{black} y=z | |
\frac{-b\color{Green}\pm\sqrt{b^2\color{Blue}-4{\color{Red}a}c}}{2a}=x | |
{\color{Blue}x^2}+{\color{Orange}2x}-{\color{LimeGreen}1} | |
\color{Blue}x^2\color{Black}+\color{Orange}2x\color{Black}-\color{LimeGreen}1 | |
Combined Sub Superscript |
---|
x_2^3 | |
{x_2}^3 | |
Complex Numbers |
---|
|\bar{z}| = |z|,
|(\bar{z})^n| = |z|^n,
\arg(z^n) = n \arg(z) | |
Continuation And Cases |
---|
f(x) =
\begin{cases}
1 & -1 \le x < 0 \\
\frac{1}{2} & x = 0 \\
1 - x^2 & \text{otherwise}
\end{cases} | |
Coproduct |
---|
\coprod_{i=1}^N x_i | |
\textstyle \coprod_{i=1}^N x_i | |
Delimiter Sizes |
---|
( \bigl( \Bigl( \biggl( \Biggl( \dots \Biggr] \biggr] \Bigr] \bigr] ] | |
\{ \bigl\{ \Bigl\{ \biggl\{ \Biggl\{ \dots \Biggr\rangle \biggr\rangle \Bigr\rangle \bigr\rangle \rangle | |
\| \big\| \Big\| \bigg\| \Bigg\| \dots \Bigg| \bigg| \Big| \big| | | |
\lfloor \bigl\lfloor \Bigl\lfloor \biggl\lfloor \Biggl\lfloor \dots \Biggr\rceil \biggr\rceil \Bigr\rceil \bigr\rceil \rceil | |
\uparrow \big\uparrow \Big\uparrow \bigg\uparrow \Bigg\uparrow \dots \Bigg\Downarrow \bigg\Downarrow \Big\Downarrow \big\Downarrow \Downarrow | |
\updownarrow \big\updownarrow \Big\updownarrow \bigg\updownarrow \Bigg\updownarrow \dots \Bigg\Updownarrow \bigg\Updownarrow \Big\Updownarrow \big\Updownarrow \Updownarrow | |
/ \big/ \Big/ \bigg/ \Bigg/ \dots \Bigg\backslash \bigg\backslash \Big\backslash \big\backslash \backslash | |
Derivative Dots |
---|
\dot{x}, \ddot{x} | |
Derivatives |
---|
x', y'', f', f'' | |
x^\prime, y^{\prime\prime} | |
Differential And Derivatives |
---|
dt, \mathrm{d}t, \partial t, \nabla\psi | |
dy/dx, \mathrm{d}y/\mathrm{d}x, \frac{dy}{dx}, \frac{\mathrm{d}y}{\mathrm{d}x} | |
\frac{\partial^2}{\partial x_1\partial x_2}y, \left.\frac{\partial^3 f}{\partial^2 x \partial y}\right\vert_{p_0} | |
\prime, \backprime, f^\prime, f', f'', f^{(3)}, \dot y, \ddot y | |
Differential Equations |
---|
u'' + p(x)u' + q(x)u=f(x),\quad x>a | |
Double Integral |
---|
\iint\limits_{D} dx\,dy | |
Floor And Ceiling |
---|
\left \lfloor \frac{a}{b} \right \rfloor | |
\left \lceil \frac{a}{b} \right \rceil | |
Fraction And Small Fraction |
---|
\frac{a}{b}\ \tfrac{a}{b} | |
Fractions |
---|
\frac{2}{4} = 0.5 | |
\tfrac{2}{4} = 0.5 | |
\dfrac{2}{4} = 0.5 \qquad \dfrac{2}{c + \dfrac{2}{d + \dfrac{2}{4}}} = a | |
\cfrac{2}{c + \cfrac{2}{d + \cfrac{2}{4}}} = a | |
\cfrac{x}{1 + \cfrac{\cancel{y}}{\cancel{y}}} = \cfrac{x}{2} | |
Fraktur |
---|
\mathfrak{ABCDEFGHI} | |
\mathfrak{JKLMNOPQR} | |
\mathfrak{STUVWXYZ} | |
\mathfrak{abcdefghijklm} | |
\mathfrak{nopqrstuvwxyz} | |
\mathfrak{0123456789} | |
Geometric |
---|
\parallel, \nparallel, \shortparallel, \nshortparallel | |
\perp, \angle, \sphericalangle, \measuredangle, 45^\circ | |
\Box, \square, \blacksquare, \diamond, \Diamond, \lozenge, \blacklozenge, \bigstar | |
\bigcirc, \triangle, \bigtriangleup, \bigtriangledown | |
\vartriangle, \triangledown | |
\blacktriangle, \blacktriangledown, \blacktriangleleft, \blacktriangleright | |
Greek Alphabet |
---|
\Alpha \Beta \Gamma \Delta \Epsilon \Zeta \Eta \Theta | |
\Iota \Kappa \Lambda \Mu \Nu \Xi \Omicron \Pi | |
\Rho \Sigma \Tau \Upsilon \Phi \Chi \Psi \Omega | |
\alpha \beta \gamma \delta \epsilon \zeta \eta \theta | |
\iota \kappa \lambda \mu \nu \xi \omicron \pi | |
\rho \sigma \tau \upsilon \phi \chi \psi \omega | |
\varGamma \varDelta \varTheta \varLambda \varXi \varPi \varSigma \varPhi \varUpsilon \varOmega | |
\varepsilon \digamma \varkappa \varpi \varrho \varsigma \vartheta \varphi | |
Greek Italics |
---|
\mathit{\Alpha \Beta \Gamma \Delta \Epsilon \Zeta \Eta \Theta} | |
\mathit{\Iota \Kappa \Lambda \Mu \Nu \Xi \Omicron \Pi} | |
\mathit{\Rho \Sigma \Tau \Upsilon \Phi \Chi \Psi \Omega} | |
Greek Uppercase Boldface Italics |
---|
\boldsymbol{\varGamma \varDelta \varTheta \varLambda} | |
\boldsymbol{\varXi \varPi \varSigma \varUpsilon \varOmega} | |
Grouping |
---|
10^{30} a^{2+2} | |
a_{i,j} b_{f'} | |
Hebrew Symbols |
---|
\aleph \beth \gimel \daleth | |
Integral |
---|
\int\limits_{1}^{3}\frac{e^3/x}{x^2}\, dx | |
\int_{1}^{3}\frac{e^3/x}{x^2}\, dx | |
\textstyle \int\limits_{-N}^{N} e^x dx | |
\textstyle \int_{-N}^{N} e^x dx | |
Integral Equation |
---|
\phi_n(\kappa) =
\frac{1}{4\pi^2\kappa^2} \int_0^\infty
\frac{\sin(\kappa R)}{\kappa R}
\frac{\partial}{\partial R}
\left [ R^2\frac{\partial D_n(R)}{\partial R} \right ] \,dR | |
Integrals |
---|
\int_a^x \int_a^s f(y)\,dy\,ds = \int_a^x f(y)(x-y)\,dy | |
\int_e^{\infty}\frac {1}{t(\ln t)^2}dt = \left. \frac{-1}{\ln t} \right\vert_e^\infty = 1 | |
Intersections |
---|
\bigcap_{i=1}^n E_i | |
Italics |
---|
\mathit{0123456789} | |
Letter Like Symbols Or Constants |
---|
\infty, \aleph, \complement, \backepsilon, \eth, \Finv, \hbar | |
\Im, \imath, \jmath, \Bbbk, \ell, \mho, \wp, \Re, \circledS, \S, \P | |
Limit |
---|
\lim_{x \to \infty} x_n | |
\textstyle \lim_{x \to \infty} x_n | |
Limits |
---|
\lim_{z\to z_0} f(z)=f(z_0) | |
Line Or Path Integral |
---|
\int_{(x,y)\in C} x^3\, dx + 4y^2\, dy | |
Logic |
---|
\forall, \exists, \nexists | |
\therefore, \because, \And | |
\lor, \vee, \curlyvee, \bigvee | |
\land, \wedge, \curlywedge, \bigwedge | |
\bar{q}, \bar{abc}, \overline{q}, \overline{abc} | |
\lnot, \neg, \not\operatorname{R}, \bot, \to | |
\vdash, \dashv, \vDash, \Vdash, \models | |
\Vvdash, \nvdash, \nVdash, \nvDash, \nVDash | |
\ulcorner, \urcorner, \llcorner, \lrcorner | |
Matrices |
---|
\begin{matrix}
-x & y \\
z & -v
\end{matrix} | |
\begin{vmatrix}
-x & y \\
z & -v
\end{vmatrix} | |
\begin{Vmatrix}
-x & y \\
z & -v
\end{Vmatrix} | |
\begin{bmatrix}
0 & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & 0
\end{bmatrix} | |
\begin{Bmatrix}
x & y \\
z & v
\end{Bmatrix} | |
\begin{pmatrix}
x & y \\
z & v
\end{pmatrix} | |
\bigl( \begin{smallmatrix}
a&b\\ c&d
\end{smallmatrix} \bigr) | |
Matrices And Determinants |
---|
\det(\mathsf{A}-\lambda\mathsf{I}) = 0 | |
Mixed |
---|
\left [ 0,1 \right ) | |
\left \langle \psi \right | | |
Mixed Faces |
---|
x y z | |
\text{x y z} | |
\text{if} n \text{is even} | |
\text{if }n\text{ is even} | |
\text{if}~n\ \text{is even} | |
Modular Arithmetic |
---|
s_k \equiv 0 \pmod{m} | |
a \bmod b | |
\gcd(m, n), \operatorname{lcm}(m, n) | |
\mid, \nmid, \shortmid, \nshortmid | |
Multiline Equations |
---|
\begin{align}
f(x) & = (a+b)^2 \\
& = a^2+2ab+b^2 \\
\end{align} | |
\begin{alignat}{2}
f(x) & = (a-b)^2 \\
& = a^2-2ab+b^2 \\
\end{alignat} | |
\begin{align}
f(a,b) & = (a+b)^2 && = (a+b)(a+b) \\
& = a^2+ab+ba+b^2 && = a^2+2ab+b^2 \\
\end{align} | |
\begin{alignat}{3}
f(a,b) & = (a+b)^2 && = (a+b)(a+b) \\
& = a^2+ab+ba+b^2 && = a^2+2ab+b^2 \\
\end{alignat} | |
\begin{array}{lcl}
z & = & a \\
f(x,y,z) & = & x + y + z
\end{array} | |
\begin{array}{lcr}
z & = & a \\
f(x,y,z) & = & x + y + z
\end{array} | |
\begin{alignat}{4}
F:\; && C(X) && \;\to\; & C(X) \\
&& g && \;\mapsto\; & g^2
\end{alignat} | |
\begin{alignat}{4}
F:\; && C(X) && \;\to\; && C(X) \\
&& g && \;\mapsto\; && g^2
\end{alignat} | |
Multiple Equations |
---|
\begin{align}
u & = \tfrac{1}{\sqrt{2}}(x+y) \qquad & x &= \tfrac{1}{\sqrt{2}}(u+v) \\[0.6ex]
v & = \tfrac{1}{\sqrt{2}}(x-y) \qquad & y &= \tfrac{1}{\sqrt{2}}(u-v)
\end{align} | |
No Delimiter |
---|
\left . \frac{A}{B} \right \} \to X | |
Operators |
---|
+, -, \pm, \mp, \dotplus | |
\times, \div, \divideontimes, /, \backslash | |
\cdot, * \ast, \star, \circ, \bullet | |
\boxplus, \boxminus, \boxtimes, \boxdot | |
\oplus, \ominus, \otimes, \oslash, \odot | |
\circleddash, \circledcirc, \circledast | |
\bigoplus, \bigotimes, \bigodot | |
Overbraces |
---|
\overbrace{ 1+2+\cdots+100 }^{5050} | |
\underbrace{ a+b+\cdots+z }_{26} | |
Parentheses |
---|
\left ( \frac{a}{b} \right ) | |
Preceding And Or Additional |
---|
{}_1^2\!\Omega_3^4 | |
Prefixed Subscript |
---|
{}_pF_q(a_1,\dots,a_p;c_1,\dots,c_q;z)
= \sum_{n=0}^\infty
\frac{(a_1)_n\cdots(a_p)_n}{(c_1)_n\cdots(c_q)_n}
\frac{z^n}{n!} | |
Product |
---|
\prod_{i=1}^N x_i | |
\textstyle \prod_{i=1}^N x_i | |
Projections |
---|
\Pr j, \hom l, \lVert z \rVert, \arg z | |
Quadratic Formula |
---|
x = \frac{-b\pm\sqrt{b^2-4ac}}{2a} | |
Quadratic Polynomial |
---|
ax^2 + bx + c = 0 | |
Quadruple Integral |
---|
\iiiint\limits_{D} dx\,dy\,dz\,dt | |
Radicals |
---|
\surd, \sqrt{2}, \sqrt[n]{2}, \sqrt[3]{\frac{x^3+y^3}{2}} | |
Relations |
---|
=, \ne, \neq, \equiv, \not\equiv | |
\doteq, \doteqdot, \overset{\underset{\mathrm{def}}{}}{=}, := | |
\sim, \nsim, \backsim, \thicksim, \simeq, \backsimeq, \eqsim, \cong, \ncong | |
\approx, \thickapprox, \approxeq, \asymp, \propto, \varpropto | |
<, \nless, \ll, \not\ll, \lll, \not\lll, \lessdot | |
>, \ngtr, \gg, \not\gg, \ggg, \not\ggg, \gtrdot | |
\le, \leq, \lneq, \leqq, \nleq, \nleqq, \lneqq, \lvertneqq | |
\ge, \geq, \gneq, \geqq, \ngeq, \ngeqq, \gneqq, \gvertneqq | |
\lessgtr, \lesseqgtr, \lesseqqgtr, \gtrless, \gtreqless, \gtreqqless | |
\leqslant, \nleqslant, \eqslantless | |
\geqslant, \ngeqslant, \eqslantgtr | |
\lesssim, \lnsim, \lessapprox, \lnapprox | |
\gtrsim, \gnsim, \gtrapprox, \gnapprox | |
\prec, \nprec, \preceq, \npreceq, \precneqq | |
\succ, \nsucc, \succeq, \nsucceq, \succneqq | |
\preccurlyeq, \curlyeqprec | |
\succcurlyeq, \curlyeqsucc | |
\precsim, \precnsim, \precapprox, \precnapprox | |
\succsim, \succnsim, \succapprox, \succnapprox | |
Roman Typeface |
---|
\mathrm{ABCDEFGHI} | |
\mathrm{JKLMNOPQR} | |
\mathrm{STUVWXYZ} | |
\mathrm{abcdefghijklm} | |
\mathrm{nopqrstuvwxyz} | |
\mathrm{0123456789} | |
Sans Serif |
---|
\mathsf{ABCDEFGHI} | |
\mathsf{JKLMNOPQR} | |
\mathsf{STUVWXYZ} | |
\mathsf{abcdefghijklm} | |
\mathsf{nopqrstuvwxyz} | |
\mathsf{0123456789} | |
Sans Serif Greek |
---|
\mathsf{\Alpha \Beta \Gamma \Delta \Epsilon \Zeta \Eta \Theta} | |
\mathsf{\Iota \Kappa \Lambda \Mu \Nu \Xi \Omicron \Pi} | |
\mathsf{\Rho \Sigma \Tau \Upsilon \Phi \Chi \Psi \Omega} | |
Sets |
---|
\{ \}, \emptyset, \varnothing | |
\in, \notin \not\in, \ni, \not\ni | |
\cap, \Cap, \sqcap, \bigcap | |
\cup, \Cup, \sqcup, \bigcup, \bigsqcup, \uplus, \biguplus | |
\setminus, \smallsetminus, \times | |
\subset, \Subset, \sqsubset | |
\supset, \Supset, \sqsupset | |
\subseteq, \nsubseteq, \subsetneq, \varsubsetneq, \sqsubseteq | |
\supseteq, \nsupseteq, \supsetneq, \varsupsetneq, \sqsupseteq | |
\subseteqq, \nsubseteqq, \subsetneqq, \varsubsetneqq | |
\supseteqq, \nsupseteqq, \supsetneqq, \varsupsetneqq | |
Slashes And Backslashes |
---|
\left / \frac{a}{b} \right \backslash | |
Small Script |
---|
{\scriptstyle\text{abcdefghijklm}} | |
Special |
---|
\amalg \P \S \% \dagger \ddagger \ldots \cdots \vdots \ddots | |
\smile \frown \wr \triangleleft \triangleright | |
\diamondsuit, \heartsuit, \clubsuit, \spadesuit, \Game, \flat, \natural, \sharp | |
Stacking |
---|
\overset{\alpha}{\omega} | |
\underset{\alpha}{\omega} | |
\overset{\alpha}{\underset{\gamma}{\omega}} | |
\stackrel{\alpha}{\omega} | |
Standard Numerical Functions |
---|
\exp_a b = a^b, \exp b = e^b, 10^m | |
\ln c = \log c, \lg d = \log_{10} d | |
\sin a, \cos b, \tan c, \cot d, \sec f, \csc g | |
\arcsin h, \arccos i, \arctan j | |
\sinh k, \cosh l, \tanh m, \coth n | |
\operatorname{sh}k, \operatorname{ch}l, \operatorname{th}m, \operatorname{coth}n | |
\operatorname{argsh}o, \operatorname{argch}p, \operatorname{argth}q | |
\sgn r, \left\vert s \right\vert | |
\min(x,y), \max(x,y) | |
Subscript |
---|
a_2 | |
Sum |
---|
\sum_{k=1}^N k^2 | |
\textstyle \sum_{k=1}^N k^2 | |
Sum In Fraction |
---|
\frac{\sum_{k=1}^N k^2}{a} | |
\frac{\displaystyle \sum_{k=1}^N k^2}{a} | |
\frac{\sum\limits^{N}_{k=1} k^2}{a} | |
Summation |
---|
\sum_{i=0}^{n-1} i | |
\sum_{m=1}^\infty\sum_{n=1}^\infty\frac{m^2 n}{3^m\left(m 3^n + n 3^m\right)} | |
Super Super |
---|
10^{10^{8}} | |
Superscript |
---|
a^2, a^{x+3} | |
Tall Parentheses And Fractions |
---|
2 = \left( \frac{\left(3-x\right) \times 2}{3-x} \right) | |
S_{\text{new}} = S_{\text{old}} - \frac{ \left( 5-T \right) ^2} {2} | |
\phi_n(\kappa) = 0.033C_n^2\kappa^{-11/3},\quad \frac{1}{L_0}\ll\kappa\ll\frac{1}{l_0} | |
Triple Integral |
---|
\iiint\limits_{D} dx\,dy\,dz | |
Underline Overline Vectors |
---|
\hat a \ \bar b \ \vec c | |
\overrightarrow{a b} \ \overleftarrow{c d} \ \widehat{d e f} | |
\overline{g h i} \ \underline{j k l} | |
Unions |
---|
\bigcup_{i=1}^n E_i | |
Unsorted |
---|
\diagup \diagdown \centerdot \ltimes \rtimes \leftthreetimes \rightthreetimes | |
\eqcirc \circeq \triangleq \bumpeq \Bumpeq \doteqdot \risingdotseq \fallingdotseq | |
\intercal \barwedge \veebar \doublebarwedge \between \pitchfork | |
\vartriangleleft \ntriangleleft \vartriangleright \ntriangleright | |
\trianglelefteq \ntrianglelefteq \trianglerighteq \ntrianglerighteq | |
Up Down Updown Arrows |
---|
\left \uparrow \frac{a}{b} \right \downarrow | |
\left \Uparrow \frac{a}{b} \right \Downarrow | |
\left \updownarrow \frac{a}{b} \right \Updownarrow | |
Volume Of Sphere Stand |
---|
V = \frac{1}{6} \pi h \left [ 3 \left ( r_1^2 + r_2^2 \right ) + h^2 \right ] | |