/**************************************************************************** * * Copyright (c) 2015 Estimation and Control Library (ECL). All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * 3. Neither the name ECL nor the names of its contributors may be * used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * ****************************************************************************/ /** * @file ekf_helper.cpp * Definition of ekf helper functions. * * @author Roman Bast * */ #include "ekf.h" #include #include #include // Reset the velocity states. If we have a recent and valid // gps measurement then use for velocity initialisation bool Ekf::resetVelocity() { // used to calculate the velocity change due to the reset Vector3f vel_before_reset = _state.vel; // reset EKF states if (_control_status.flags.gps && _gps_check_fail_status.value==0) { // this reset is only called if we have new gps data at the fusion time horizon _state.vel = _gps_sample_delayed.vel; // use GPS accuracy to reset variances setDiag(P, 4, 6, sq(_gps_sample_delayed.sacc)); } else if (_control_status.flags.opt_flow) { // constrain height above ground to be above minimum possible float heightAboveGndEst = fmaxf((_terrain_vpos - _state.pos(2)), _params.rng_gnd_clearance); // calculate absolute distance from focal point to centre of frame assuming a flat earth float range = heightAboveGndEst / _R_rng_to_earth_2_2; if ((range - _params.rng_gnd_clearance) > 0.3f && _flow_sample_delayed.dt > 0.05f) { // we should have reliable OF measurements so // calculate X and Y body relative velocities from OF measurements Vector3f vel_optflow_body; vel_optflow_body(0) = - range * _flowRadXYcomp(1) / _flow_sample_delayed.dt; vel_optflow_body(1) = range * _flowRadXYcomp(0) / _flow_sample_delayed.dt; vel_optflow_body(2) = 0.0f; // rotate from body to earth frame Vector3f vel_optflow_earth; vel_optflow_earth = _R_to_earth * vel_optflow_body; // take x and Y components _state.vel(0) = vel_optflow_earth(0); _state.vel(1) = vel_optflow_earth(1); } else { _state.vel(0) = 0.0f; _state.vel(1) = 0.0f; } // reset the velocity covariance terms zeroRows(P, 4, 5); zeroCols(P, 4, 5); // reset the horizontal velocity variance using the optical flow noise variance P[5][5] = P[4][4] = sq(range) * calcOptFlowMeasVar(); } else if (_control_status.flags.ev_vel) { Vector3f _ev_vel = _ev_sample_delayed.vel; if(_params.fusion_mode & MASK_ROTATE_EV){ _ev_vel = _ev_rot_mat *_ev_sample_delayed.vel; } _state.vel(0) = _ev_vel(0); _state.vel(1) = _ev_vel(1); _state.vel(2) = _ev_vel(2); setDiag(P, 4, 6, sq(_ev_sample_delayed.velErr)); } else if (_control_status.flags.ev_pos) { _state.vel.setZero(); zeroOffDiag(P, 4, 6); } else { // Used when falling back to non-aiding mode of operation _state.vel(0) = 0.0f; _state.vel(1) = 0.0f; setDiag(P, 4, 5, 25.0f); } // calculate the change in velocity and apply to the output predictor state history const Vector3f velocity_change = _state.vel - vel_before_reset; for (uint8_t index = 0; index < _output_buffer.get_length(); index++) { _output_buffer[index].vel += velocity_change; } // apply the change in velocity to our newest velocity estimate // which was already taken out from the output buffer _output_new.vel += velocity_change; // capture the reset event _state_reset_status.velNE_change(0) = velocity_change(0); _state_reset_status.velNE_change(1) = velocity_change(1); _state_reset_status.velD_change = velocity_change(2); _state_reset_status.velNE_counter++; _state_reset_status.velD_counter++; return true; } // Reset position states. If we have a recent and valid // gps measurement then use for position initialisation bool Ekf::resetPosition() { // used to calculate the position change due to the reset Vector2f posNE_before_reset; posNE_before_reset(0) = _state.pos(0); posNE_before_reset(1) = _state.pos(1); // let the next odometry update know that the previous value of states cannot be used to calculate the change in position _hpos_prev_available = false; if (_control_status.flags.gps) { // this reset is only called if we have new gps data at the fusion time horizon _state.pos(0) = _gps_sample_delayed.pos(0); _state.pos(1) = _gps_sample_delayed.pos(1); // use GPS accuracy to reset variances setDiag(P, 7, 8, sq(_gps_sample_delayed.hacc)); } else if (_control_status.flags.ev_pos) { // this reset is only called if we have new ev data at the fusion time horizon Vector3f _ev_pos = _ev_sample_delayed.pos; if(_params.fusion_mode & MASK_ROTATE_EV){ _ev_pos = _ev_rot_mat *_ev_sample_delayed.pos; } _state.pos(0) = _ev_pos(0); _state.pos(1) = _ev_pos(1); // use EV accuracy to reset variances setDiag(P, 7, 8, sq(_ev_sample_delayed.posErr)); } else if (_control_status.flags.opt_flow) { if (!_control_status.flags.in_air) { // we are likely starting OF for the first time so reset the horizontal position _state.pos(0) = 0.0f; _state.pos(1) = 0.0f; } else { // set to the last known position _state.pos(0) = _last_known_posNE(0); _state.pos(1) = _last_known_posNE(1); } // estimate is relative to initial position in this mode, so we start with zero error. zeroCols(P,7,8); zeroRows(P,7,8); } else { // Used when falling back to non-aiding mode of operation _state.pos(0) = _last_known_posNE(0); _state.pos(1) = _last_known_posNE(1); setDiag(P, 7, 8, sq(_params.pos_noaid_noise)); } // calculate the change in position and apply to the output predictor state history const Vector2f posNE_change{_state.pos(0) - posNE_before_reset(0), _state.pos(1) - posNE_before_reset(1)}; for (uint8_t index = 0; index < _output_buffer.get_length(); index++) { _output_buffer[index].pos(0) += posNE_change(0); _output_buffer[index].pos(1) += posNE_change(1); } // apply the change in position to our newest position estimate // which was already taken out from the output buffer _output_new.pos(0) += posNE_change(0); _output_new.pos(1) += posNE_change(1); // capture the reset event _state_reset_status.posNE_change = posNE_change; _state_reset_status.posNE_counter++; return true; } // Reset height state using the last height measurement void Ekf::resetHeight() { // Get the most recent GPS data const gpsSample &gps_newest = _gps_buffer.get_newest(); // store the current vertical position and velocity for reference so we can calculate and publish the reset amount float old_vert_pos = _state.pos(2); bool vert_pos_reset = false; float old_vert_vel = _state.vel(2); bool vert_vel_reset = false; // reset the vertical position if (_control_status.flags.rng_hgt) { float new_pos_down = _hgt_sensor_offset - _range_sample_delayed.rng * _R_rng_to_earth_2_2; // update the state and associated variance _state.pos(2) = new_pos_down; // reset the associated covariance values zeroRows(P, 9, 9); zeroCols(P, 9, 9); // the state variance is the same as the observation P[9][9] = sq(_params.range_noise); vert_pos_reset = true; // reset the baro offset which is subtracted from the baro reading if we need to use it as a backup const baroSample &baro_newest = _baro_buffer.get_newest(); _baro_hgt_offset = baro_newest.hgt + _state.pos(2); } else if (_control_status.flags.baro_hgt) { // initialize vertical position with newest baro measurement const baroSample &baro_newest = _baro_buffer.get_newest(); if (_time_last_imu - baro_newest.time_us < 2 * BARO_MAX_INTERVAL) { _state.pos(2) = _hgt_sensor_offset - baro_newest.hgt + _baro_hgt_offset; // reset the associated covariance values zeroRows(P, 9, 9); zeroCols(P, 9, 9); // the state variance is the same as the observation P[9][9] = sq(_params.baro_noise); vert_pos_reset = true; } else { // TODO: reset to last known baro based estimate } } else if (_control_status.flags.gps_hgt) { // initialize vertical position and velocity with newest gps measurement if (_time_last_imu - gps_newest.time_us < 2 * GPS_MAX_INTERVAL) { _state.pos(2) = _hgt_sensor_offset - gps_newest.hgt + _gps_alt_ref; // reset the associated covariance values zeroRows(P, 9, 9); zeroCols(P, 9, 9); // the state variance is the same as the observation P[9][9] = sq(gps_newest.hacc); vert_pos_reset = true; // reset the baro offset which is subtracted from the baro reading if we need to use it as a backup const baroSample &baro_newest = _baro_buffer.get_newest(); _baro_hgt_offset = baro_newest.hgt + _state.pos(2); } else { // TODO: reset to last known gps based estimate } } else if (_control_status.flags.ev_hgt) { // initialize vertical position with newest measurement const extVisionSample &ev_newest = _ext_vision_buffer.get_newest(); // use the most recent data if it's time offset from the fusion time horizon is smaller int32_t dt_newest = ev_newest.time_us - _imu_sample_delayed.time_us; int32_t dt_delayed = _ev_sample_delayed.time_us - _imu_sample_delayed.time_us; vert_pos_reset = true; if (std::abs(dt_newest) < std::abs(dt_delayed)) { _state.pos(2) = ev_newest.pos(2); } else { _state.pos(2) = _ev_sample_delayed.pos(2); } } // reset the vertical velocity covariance values zeroRows(P, 6, 6); zeroCols(P, 6, 6); // reset the vertical velocity state if (_control_status.flags.gps && (_time_last_imu - gps_newest.time_us < 2 * GPS_MAX_INTERVAL)) { // If we are using GPS, then use it to reset the vertical velocity _state.vel(2) = gps_newest.vel(2); // the state variance is the same as the observation P[6][6] = sq(1.5f * gps_newest.sacc); } else { // we don't know what the vertical velocity is, so set it to zero _state.vel(2) = 0.0f; // Set the variance to a value large enough to allow the state to converge quickly // that does not destabilise the filter P[6][6] = 10.0f; } vert_vel_reset = true; // store the reset amount and time to be published if (vert_pos_reset) { _state_reset_status.posD_change = _state.pos(2) - old_vert_pos; _state_reset_status.posD_counter++; } if (vert_vel_reset) { _state_reset_status.velD_change = _state.vel(2) - old_vert_vel; _state_reset_status.velD_counter++; } // apply the change in height / height rate to our newest height / height rate estimate // which have already been taken out from the output buffer if (vert_pos_reset) { _output_new.pos(2) += _state_reset_status.posD_change; } if (vert_vel_reset) { _output_new.vel(2) += _state_reset_status.velD_change; } // add the reset amount to the output observer buffered data for (uint8_t i = 0; i < _output_buffer.get_length(); i++) { if (vert_pos_reset) { _output_buffer[i].pos(2) += _state_reset_status.posD_change; _output_vert_buffer[i].vel_d_integ += _state_reset_status.posD_change; } if (vert_vel_reset) { _output_buffer[i].vel(2) += _state_reset_status.velD_change; _output_vert_buffer[i].vel_d += _state_reset_status.velD_change; } } // add the reset amount to the output observer vertical position state if (vert_pos_reset) { _output_vert_delayed.vel_d_integ = _state.pos(2); _output_vert_new.vel_d_integ = _state.pos(2); } if (vert_vel_reset) { _output_vert_delayed.vel_d = _state.vel(2); _output_vert_new.vel_d = _state.vel(2); } } // align output filter states to match EKF states at the fusion time horizon void Ekf::alignOutputFilter() { // calculate the quaternion rotation delta from the EKF to output observer states at the EKF fusion time horizon Quatf q_delta = _state.quat_nominal * _output_sample_delayed.quat_nominal.inversed(); q_delta.normalize(); // calculate the velocity and position deltas between the output and EKF at the EKF fusion time horizon const Vector3f vel_delta = _state.vel - _output_sample_delayed.vel; const Vector3f pos_delta = _state.pos - _output_sample_delayed.pos; // loop through the output filter state history and add the deltas for (uint8_t i = 0; i < _output_buffer.get_length(); i++) { _output_buffer[i].quat_nominal = q_delta * _output_buffer[i].quat_nominal; _output_buffer[i].quat_nominal.normalize(); _output_buffer[i].vel += vel_delta; _output_buffer[i].pos += pos_delta; } _output_new.quat_nominal = q_delta * _output_new.quat_nominal; _output_new.quat_nominal.normalize(); _output_sample_delayed.quat_nominal = q_delta * _output_sample_delayed.quat_nominal; _output_sample_delayed.quat_nominal.normalize(); } // Do a forced re-alignment of the yaw angle to align with the horizontal velocity vector from the GPS. // It is used to align the yaw angle after launch or takeoff for fixed wing vehicle only. bool Ekf::realignYawGPS() { // Need at least 5 m/s of GPS horizontal speed and ratio of velocity error to velocity < 0.15 for a reliable alignment float gpsSpeed = sqrtf(sq(_gps_sample_delayed.vel(0)) + sq(_gps_sample_delayed.vel(1))); if ((gpsSpeed > 5.0f) && (_gps_sample_delayed.sacc < (0.15f * gpsSpeed))) { // check for excessive GPS velocity innovations bool badVelInnov = ((_vel_pos_test_ratio[0] > 1.0f) || (_vel_pos_test_ratio[1] > 1.0f)) && _control_status.flags.gps; // calculate GPS course over ground angle float gpsCOG = atan2f(_gps_sample_delayed.vel(1), _gps_sample_delayed.vel(0)); // calculate course yaw angle float ekfGOG = atan2f(_state.vel(1), _state.vel(0)); // Check the EKF and GPS course over ground for consistency float courseYawError = gpsCOG - ekfGOG; // If the angles disagree and horizontal GPS velocity innovations are large or no previous yaw alignment, we declare the magnetic yaw as bad bool badYawErr = fabsf(courseYawError) > 0.5f; bool badMagYaw = (badYawErr && badVelInnov); if (badMagYaw) { _num_bad_flight_yaw_events ++; } // correct yaw angle using GPS ground course if compass yaw bad or yaw is previously not aligned if (badMagYaw || !_control_status.flags.yaw_align) { ECL_WARN_TIMESTAMPED("EKF bad yaw corrected using GPS course"); // declare the magnetometer as failed if a bad yaw has occurred more than once if (_control_status.flags.mag_align_complete && (_num_bad_flight_yaw_events >= 2) && !_control_status.flags.mag_fault) { ECL_WARN_TIMESTAMPED("EKF stopping magnetometer use"); _control_status.flags.mag_fault = true; } // save a copy of the quaternion state for later use in calculating the amount of reset change Quatf quat_before_reset = _state.quat_nominal; // update transformation matrix from body to world frame using the current state estimate _R_to_earth = Dcmf(_state.quat_nominal); // get quaternion from existing filter states and calculate roll, pitch and yaw angles Eulerf euler321(_state.quat_nominal); // apply yaw correction if (!_control_status.flags.mag_align_complete) { // This is our first flight alignment so we can assume that the recent change in velocity has occurred due to a // forward direction takeoff or launch and therefore the inertial and GPS ground course discrepancy is due to yaw error euler321(2) += courseYawError; _control_status.flags.mag_align_complete = true; } else if (_control_status.flags.wind) { // we have previously aligned yaw in-flight and have wind estimates so set the yaw such that the vehicle nose is // aligned with the wind relative GPS velocity vector euler321(2) = atan2f((_gps_sample_delayed.vel(1) - _state.wind_vel(1)), (_gps_sample_delayed.vel(0) - _state.wind_vel(0))); } else { // we don't have wind estimates, so align yaw to the GPS velocity vector euler321(2) = atan2f(_gps_sample_delayed.vel(1), _gps_sample_delayed.vel(0)); } // calculate new filter quaternion states using corrected yaw angle _state.quat_nominal = Quatf(euler321); uncorrelateQuatStates(); // If heading was bad, then we also need to reset the velocity and position states _velpos_reset_request = badMagYaw; // update transformation matrix from body to world frame using the current state estimate _R_to_earth = Dcmf(_state.quat_nominal); // Use the last magnetometer measurements to reset the field states _state.mag_B.zero(); _state.mag_I = _R_to_earth * _mag_sample_delayed.mag; // use the combined EKF and GPS speed variance to calculate a rough estimate of the yaw error after alignment float SpdErrorVariance = sq(_gps_sample_delayed.sacc) + P[4][4] + P[5][5]; float sineYawError = math::constrain(sqrtf(SpdErrorVariance) / gpsSpeed, 0.0f, 1.0f); // adjust the quaternion covariances estimated yaw error increaseQuatYawErrVariance(sq(asinf(sineYawError))); // reset the corresponding rows and columns in the covariance matrix and set the variances on the magnetic field states to the measurement variance zeroRows(P, 16, 21); zeroCols(P, 16, 21); _mag_decl_cov_reset = false; if (_control_status.flags.mag_3D) { for (uint8_t index = 16; index <= 21; index ++) { P[index][index] = sq(_params.mag_noise); } // save covariance data for re-use when auto-switching between heading and 3-axis fusion save_mag_cov_data(); } // record the start time for the magnetic field alignment _flt_mag_align_start_time = _imu_sample_delayed.time_us; // calculate the amount that the quaternion has changed by _state_reset_status.quat_change = _state.quat_nominal * quat_before_reset.inversed(); // add the reset amount to the output observer buffered data for (uint8_t i = 0; i < _output_buffer.get_length(); i++) { _output_buffer[i].quat_nominal = _state_reset_status.quat_change * _output_buffer[i].quat_nominal; } // apply the change in attitude quaternion to our newest quaternion estimate // which was already taken out from the output buffer _output_new.quat_nominal = _state_reset_status.quat_change * _output_new.quat_nominal; // capture the reset event _state_reset_status.quat_counter++; return true; } else { // align mag states only // calculate initial earth magnetic field states _state.mag_I = _R_to_earth * _mag_sample_delayed.mag; // reset the corresponding rows and columns in the covariance matrix and set the variances on the magnetic field states to the measurement variance zeroRows(P, 16, 21); zeroCols(P, 16, 21); _mag_decl_cov_reset = false; if (_control_status.flags.mag_3D) { for (uint8_t index = 16; index <= 21; index ++) { P[index][index] = sq(_params.mag_noise); } // save covariance data for re-use when auto-switching between heading and 3-axis fusion save_mag_cov_data(); } // record the start time for the magnetic field alignment _flt_mag_align_start_time = _imu_sample_delayed.time_us; return true; } } else { // attempt a normal alignment using the magnetometer return resetMagHeading(_mag_sample_delayed.mag); } } // Reset heading and magnetic field states bool Ekf::resetMagHeading(Vector3f &mag_init, bool increase_yaw_var, bool update_buffer) { // prevent a reset being performed more than once on the same frame if (_imu_sample_delayed.time_us == _flt_mag_align_start_time) { return true; } if (_params.mag_fusion_type >= MAG_FUSE_TYPE_NONE) { // do not use the magnetometer and deactivate magnetic field states // save covariance data for re-use if currently doing 3-axis fusion if (_control_status.flags.mag_3D) { save_mag_cov_data(); _control_status.flags.mag_3D = false; } zeroRows(P, 16, 21); zeroCols(P, 16, 21); _mag_decl_cov_reset = false; _control_status.flags.mag_hdg = false; return false; } // save a copy of the quaternion state for later use in calculating the amount of reset change Quatf quat_before_reset = _state.quat_nominal; Quatf quat_after_reset = _state.quat_nominal; // update transformation matrix from body to world frame using the current estimate _R_to_earth = Dcmf(_state.quat_nominal); // calculate the initial quaternion // determine if a 321 or 312 Euler sequence is best if (fabsf(_R_to_earth(2, 0)) < fabsf(_R_to_earth(2, 1))) { // use a 321 sequence // rotate the magnetometer measurement into earth frame Eulerf euler321(_state.quat_nominal); // Set the yaw angle to zero and calculate the rotation matrix from body to earth frame euler321(2) = 0.0f; Dcmf R_to_earth(euler321); // calculate the observed yaw angle if (_control_status.flags.ev_yaw) { // convert the observed quaternion to a rotation matrix Dcmf R_to_earth_ev(_ev_sample_delayed.quat); // transformation matrix from body to world frame // calculate the yaw angle for a 312 sequence euler321(2) = atan2f(R_to_earth_ev(1, 0), R_to_earth_ev(0, 0)); } else if (_params.mag_fusion_type <= MAG_FUSE_TYPE_AUTOFW) { // rotate the magnetometer measurements into earth frame using a zero yaw angle Vector3f mag_earth_pred = R_to_earth * mag_init; // the angle of the projection onto the horizontal gives the yaw angle euler321(2) = -atan2f(mag_earth_pred(1), mag_earth_pred(0)) + getMagDeclination(); } else if (_params.mag_fusion_type == MAG_FUSE_TYPE_INDOOR && _mag_use_inhibit) { // we are operating without knowing the earth frame yaw angle return true; } else { // there is no yaw observation return false; } // calculate initial quaternion states for the ekf // we don't change the output attitude to avoid jumps quat_after_reset = Quatf(euler321); } else { // use a 312 sequence // Calculate the 312 sequence euler angles that rotate from earth to body frame // See http://www.atacolorado.com/eulersequences.doc Vector3f euler312; euler312(0) = atan2f(-_R_to_earth(0, 1), _R_to_earth(1, 1)); // first rotation (yaw) euler312(1) = asinf(_R_to_earth(2, 1)); // second rotation (roll) euler312(2) = atan2f(-_R_to_earth(2, 0), _R_to_earth(2, 2)); // third rotation (pitch) // Set the first rotation (yaw) to zero and calculate the rotation matrix from body to earth frame euler312(0) = 0.0f; // Calculate the body to earth frame rotation matrix from the euler angles using a 312 rotation sequence float c2 = cosf(euler312(2)); float s2 = sinf(euler312(2)); float s1 = sinf(euler312(1)); float c1 = cosf(euler312(1)); float s0 = sinf(euler312(0)); float c0 = cosf(euler312(0)); Dcmf R_to_earth; R_to_earth(0, 0) = c0 * c2 - s0 * s1 * s2; R_to_earth(1, 1) = c0 * c1; R_to_earth(2, 2) = c2 * c1; R_to_earth(0, 1) = -c1 * s0; R_to_earth(0, 2) = s2 * c0 + c2 * s1 * s0; R_to_earth(1, 0) = c2 * s0 + s2 * s1 * c0; R_to_earth(1, 2) = s0 * s2 - s1 * c0 * c2; R_to_earth(2, 0) = -s2 * c1; R_to_earth(2, 1) = s1; // calculate the observed yaw angle if (_control_status.flags.ev_yaw) { // convert the observed quaternion to a rotation matrix Dcmf R_to_earth_ev(_ev_sample_delayed.quat); // transformation matrix from body to world frame // calculate the yaw angle for a 312 sequence euler312(0) = atan2f(-R_to_earth_ev(0, 1), R_to_earth_ev(1, 1)); } else if (_params.mag_fusion_type <= MAG_FUSE_TYPE_AUTOFW) { // rotate the magnetometer measurements into earth frame using a zero yaw angle Vector3f mag_earth_pred = R_to_earth * mag_init; // the angle of the projection onto the horizontal gives the yaw angle euler312(0) = -atan2f(mag_earth_pred(1), mag_earth_pred(0)) + getMagDeclination(); } else if (_params.mag_fusion_type == MAG_FUSE_TYPE_INDOOR && _mag_use_inhibit) { // we are operating without knowing the earth frame yaw angle return true; } else { // there is no yaw observation return false; } // re-calculate the rotation matrix using the updated yaw angle s0 = sinf(euler312(0)); c0 = cosf(euler312(0)); R_to_earth(0, 0) = c0 * c2 - s0 * s1 * s2; R_to_earth(1, 1) = c0 * c1; R_to_earth(2, 2) = c2 * c1; R_to_earth(0, 1) = -c1 * s0; R_to_earth(0, 2) = s2 * c0 + c2 * s1 * s0; R_to_earth(1, 0) = c2 * s0 + s2 * s1 * c0; R_to_earth(1, 2) = s0 * s2 - s1 * c0 * c2; R_to_earth(2, 0) = -s2 * c1; R_to_earth(2, 1) = s1; // calculate initial quaternion states for the ekf // we don't change the output attitude to avoid jumps quat_after_reset = Quatf(R_to_earth); } // set the earth magnetic field states using the updated rotation Dcmf R_to_earth_after(quat_after_reset); _state.mag_I = R_to_earth_after * mag_init; // reset the corresponding rows and columns in the covariance matrix and set the variances on the magnetic field states to the measurement variance zeroRows(P, 16, 21); zeroCols(P, 16, 21); _mag_decl_cov_reset = false; if (_control_status.flags.mag_3D) { for (uint8_t index = 16; index <= 21; index ++) { P[index][index] = sq(_params.mag_noise); } // save covariance data for re-use when auto-switching between heading and 3-axis fusion save_mag_cov_data(); } // record the time for the magnetic field alignment event _flt_mag_align_start_time = _imu_sample_delayed.time_us; // calculate the amount that the quaternion has changed by Quatf q_error = quat_after_reset * quat_before_reset.inversed(); q_error.normalize(); // update quaternion states _state.quat_nominal = quat_after_reset; uncorrelateQuatStates(); // record the state change _state_reset_status.quat_change = q_error; // update transformation matrix from body to world frame using the current estimate _R_to_earth = Dcmf(_state.quat_nominal); // reset the rotation from the EV to EKF frame of reference if it is being used if ((_params.fusion_mode & MASK_ROTATE_EV) && !_control_status.flags.ev_yaw) { resetExtVisRotMat(); } if (increase_yaw_var) { // update the yaw angle variance using the variance of the measurement if (_control_status.flags.ev_yaw) { // using error estimate from external vision data increaseQuatYawErrVariance(sq(fmaxf(_ev_sample_delayed.angErr, 1.0e-2f))); } else if (_params.mag_fusion_type <= MAG_FUSE_TYPE_AUTOFW) { // using magnetic heading tuning parameter increaseQuatYawErrVariance(sq(fmaxf(_params.mag_heading_noise, 1.0e-2f))); } } if (update_buffer) { // add the reset amount to the output observer buffered data for (uint8_t i = 0; i < _output_buffer.get_length(); i++) { _output_buffer[i].quat_nominal = _state_reset_status.quat_change * _output_buffer[i].quat_nominal; } // apply the change in attitude quaternion to our newest quaternion estimate // which was already taken out from the output buffer _output_new.quat_nominal = _state_reset_status.quat_change * _output_new.quat_nominal; } // capture the reset event _state_reset_status.quat_counter++; return true; } // Return the magnetic declination in radians to be used by the alignment and fusion processing float Ekf::getMagDeclination() { // set source of magnetic declination for internal use if (_control_status.flags.mag_align_complete) { // Use value consistent with earth field state return atan2f(_state.mag_I(1), _state.mag_I(0)); } else if (_params.mag_declination_source & MASK_USE_GEO_DECL) { // use parameter value until GPS is available, then use value returned by geo library if (_NED_origin_initialised) { return _mag_declination_gps; } else { return math::radians(_params.mag_declination_deg); } } else { // always use the parameter value return math::radians(_params.mag_declination_deg); } } // This function forces the covariance matrix to be symmetric void Ekf::makeSymmetrical(float (&cov_mat)[_k_num_states][_k_num_states], uint8_t first, uint8_t last) { for (unsigned row = first; row <= last; row++) { for (unsigned column = 0; column < row; column++) { float tmp = (cov_mat[row][column] + cov_mat[column][row]) / 2; cov_mat[row][column] = tmp; cov_mat[column][row] = tmp; } } } void Ekf::constrainStates() { for (int i = 0; i < 4; i++) { _state.quat_nominal(i) = math::constrain(_state.quat_nominal(i), -1.0f, 1.0f); } for (int i = 0; i < 3; i++) { _state.vel(i) = math::constrain(_state.vel(i), -1000.0f, 1000.0f); } for (int i = 0; i < 3; i++) { _state.pos(i) = math::constrain(_state.pos(i), -1.e6f, 1.e6f); } for (int i = 0; i < 3; i++) { _state.gyro_bias(i) = math::constrain(_state.gyro_bias(i), -math::radians(20.f) * _dt_ekf_avg, math::radians(20.f) * _dt_ekf_avg); } for (int i = 0; i < 3; i++) { _state.accel_bias(i) = math::constrain(_state.accel_bias(i), -_params.acc_bias_lim * _dt_ekf_avg, _params.acc_bias_lim * _dt_ekf_avg); } for (int i = 0; i < 3; i++) { _state.mag_I(i) = math::constrain(_state.mag_I(i), -1.0f, 1.0f); } for (int i = 0; i < 3; i++) { _state.mag_B(i) = math::constrain(_state.mag_B(i), -0.5f, 0.5f); } for (int i = 0; i < 2; i++) { _state.wind_vel(i) = math::constrain(_state.wind_vel(i), -100.0f, 100.0f); } } // calculate the earth rotation vector void Ekf::calcEarthRateNED(Vector3f &omega, float lat_rad) const { omega(0) = CONSTANTS_EARTH_SPIN_RATE * cosf(lat_rad); omega(1) = 0.0f; omega(2) = -CONSTANTS_EARTH_SPIN_RATE * sinf(lat_rad); } // gets the innovations of velocity and position measurements // 0-2 vel, 3-5 pos void Ekf::get_vel_pos_innov(float vel_pos_innov[6]) { memcpy(vel_pos_innov, _vel_pos_innov, sizeof(float) * 6); } // gets the innovations for of the NE auxiliary velocity measurement void Ekf::get_aux_vel_innov(float aux_vel_innov[2]) { memcpy(aux_vel_innov, _aux_vel_innov, sizeof(float) * 2); } // writes the innovations of the earth magnetic field measurements void Ekf::get_mag_innov(float mag_innov[3]) { memcpy(mag_innov, _mag_innov, 3 * sizeof(float)); } // gets the innovations of the airspeed measurement void Ekf::get_airspeed_innov(float *airspeed_innov) { memcpy(airspeed_innov, &_airspeed_innov, sizeof(float)); } // gets the innovations of the synthetic sideslip measurements void Ekf::get_beta_innov(float *beta_innov) { memcpy(beta_innov, &_beta_innov, sizeof(float)); } // gets the innovations of the heading measurement void Ekf::get_heading_innov(float *heading_innov) { memcpy(heading_innov, &_heading_innov, sizeof(float)); } // gets the innovation variances of velocity and position measurements // 0-2 vel, 3-5 pos void Ekf::get_vel_pos_innov_var(float vel_pos_innov_var[6]) { memcpy(vel_pos_innov_var, _vel_pos_innov_var, sizeof(float) * 6); } // gets the innovation variances of the earth magnetic field measurements void Ekf::get_mag_innov_var(float mag_innov_var[3]) { memcpy(mag_innov_var, _mag_innov_var, sizeof(float) * 3); } // gets the innovation variance of the airspeed measurement void Ekf::get_airspeed_innov_var(float *airspeed_innov_var) { memcpy(airspeed_innov_var, &_airspeed_innov_var, sizeof(float)); } // gets the innovation variance of the synthetic sideslip measurement void Ekf::get_beta_innov_var(float *beta_innov_var) { memcpy(beta_innov_var, &_beta_innov_var, sizeof(float)); } // gets the innovation variance of the heading measurement void Ekf::get_heading_innov_var(float *heading_innov_var) { memcpy(heading_innov_var, &_heading_innov_var, sizeof(float)); } // get GPS check status void Ekf::get_gps_check_status(uint16_t *val) { *val = _gps_check_fail_status.value; } // get the state vector at the delayed time horizon void Ekf::get_state_delayed(float *state) { for (int i = 0; i < 4; i++) { state[i] = _state.quat_nominal(i); } for (int i = 0; i < 3; i++) { state[i + 4] = _state.vel(i); } for (int i = 0; i < 3; i++) { state[i + 7] = _state.pos(i); } for (int i = 0; i < 3; i++) { state[i + 10] = _state.gyro_bias(i); } for (int i = 0; i < 3; i++) { state[i + 13] = _state.accel_bias(i); } for (int i = 0; i < 3; i++) { state[i + 16] = _state.mag_I(i); } for (int i = 0; i < 3; i++) { state[i + 19] = _state.mag_B(i); } for (int i = 0; i < 2; i++) { state[i + 22] = _state.wind_vel(i); } } // get the accelerometer bias void Ekf::get_accel_bias(float bias[3]) { float temp[3]; temp[0] = _state.accel_bias(0) / _dt_ekf_avg; temp[1] = _state.accel_bias(1) / _dt_ekf_avg; temp[2] = _state.accel_bias(2) / _dt_ekf_avg; memcpy(bias, temp, 3 * sizeof(float)); } // get the gyroscope bias in rad/s void Ekf::get_gyro_bias(float bias[3]) { float temp[3]; temp[0] = _state.gyro_bias(0) / _dt_ekf_avg; temp[1] = _state.gyro_bias(1) / _dt_ekf_avg; temp[2] = _state.gyro_bias(2) / _dt_ekf_avg; memcpy(bias, temp, 3 * sizeof(float)); } // get the position and height of the ekf origin in WGS-84 coordinates and time the origin was set // return true if the origin is valid bool Ekf::get_ekf_origin(uint64_t *origin_time, map_projection_reference_s *origin_pos, float *origin_alt) { memcpy(origin_time, &_last_gps_origin_time_us, sizeof(uint64_t)); memcpy(origin_pos, &_pos_ref, sizeof(map_projection_reference_s)); memcpy(origin_alt, &_gps_alt_ref, sizeof(float)); return _NED_origin_initialised; } // return an array containing the output predictor angular, velocity and position tracking // error magnitudes (rad), (m/s), (m) void Ekf::get_output_tracking_error(float error[3]) { memcpy(error, _output_tracking_error, 3 * sizeof(float)); } /* Returns following IMU vibration metrics in the following array locations 0 : Gyro delta angle coning metric = filtered length of (delta_angle x prev_delta_angle) 1 : Gyro high frequency vibe = filtered length of (delta_angle - prev_delta_angle) 2 : Accel high frequency vibe = filtered length of (delta_velocity - prev_delta_velocity) */ void Ekf::get_imu_vibe_metrics(float vibe[3]) { memcpy(vibe, _vibe_metrics, 3 * sizeof(float)); } /* First argument returns GPS drift metrics in the following array locations 0 : Horizontal position drift rate (m/s) 1 : Vertical position drift rate (m/s) 2 : Filtered horizontal velocity (m/s) Second argument returns true when IMU movement is blocking the drift calculation Function returns true if the metrics have been updated and not returned previously by this function */ bool Ekf::get_gps_drift_metrics(float drift[3], bool *blocked) { memcpy(drift, _gps_drift_metrics, 3 * sizeof(float)); *blocked = !_vehicle_at_rest; if (_gps_drift_updated) { _gps_drift_updated = false; return true; } return false; } // get the 1-sigma horizontal and vertical position uncertainty of the ekf WGS-84 position void Ekf::get_ekf_gpos_accuracy(float *ekf_eph, float *ekf_epv) { // report absolute accuracy taking into account the uncertainty in location of the origin // If not aiding, return 0 for horizontal position estimate as no estimate is available // TODO - allow for baro drift in vertical position error float hpos_err = sqrtf(P[7][7] + P[8][8] + sq(_gps_origin_eph)); // If we are dead-reckoning, use the innovations as a conservative alternate measure of the horizontal position error // The reason is that complete rejection of measurements is often caused by heading misalignment or inertial sensing errors // and using state variances for accuracy reporting is overly optimistic in these situations if (_is_dead_reckoning && (_control_status.flags.gps || _control_status.flags.ev_pos)) { hpos_err = math::max(hpos_err, sqrtf(sq(_vel_pos_innov[3]) + sq(_vel_pos_innov[4]))); } *ekf_eph = hpos_err; *ekf_epv = sqrtf(P[9][9] + sq(_gps_origin_epv)); } // get the 1-sigma horizontal and vertical position uncertainty of the ekf local position void Ekf::get_ekf_lpos_accuracy(float *ekf_eph, float *ekf_epv) { // TODO - allow for baro drift in vertical position error float hpos_err = sqrtf(P[7][7] + P[8][8]); // If we are dead-reckoning, use the innovations as a conservative alternate measure of the horizontal position error // The reason is that complete rejection of measurements is often caused by heading misalignment or inertial sensing errors // and using state variances for accuracy reporting is overly optimistic in these situations if (_is_dead_reckoning && (_control_status.flags.gps || _control_status.flags.ev_pos)) { hpos_err = math::max(hpos_err, sqrtf(sq(_vel_pos_innov[3]) + sq(_vel_pos_innov[4]))); } *ekf_eph = hpos_err; *ekf_epv = sqrtf(P[9][9]); } // get the 1-sigma horizontal and vertical velocity uncertainty void Ekf::get_ekf_vel_accuracy(float *ekf_evh, float *ekf_evv) { float hvel_err = sqrtf(P[4][4] + P[5][5]); // If we are dead-reckoning, use the innovations as a conservative alternate measure of the horizontal velocity error // The reason is that complete rejection of measurements is often caused by heading misalignment or inertial sensing errors // and using state variances for accuracy reporting is overly optimistic in these situations if (_is_dead_reckoning) { float vel_err_conservative = 0.0f; if (_control_status.flags.opt_flow) { float gndclearance = math::max(_params.rng_gnd_clearance, 0.1f); vel_err_conservative = math::max((_terrain_vpos - _state.pos(2)), gndclearance) * sqrtf(sq(_flow_innov[0]) + sq(_flow_innov[1])); } if (_control_status.flags.gps || _control_status.flags.ev_pos) { vel_err_conservative = math::max(vel_err_conservative, sqrtf(sq(_vel_pos_innov[0]) + sq(_vel_pos_innov[1]))); } if (_control_status.flags.ev_vel) { // What is the right thing to do here // vel_err_conservative = math::max(vel_err_conservative, sqrtf(sq(_vel_pos_innov[0]) + sq(_vel_pos_innov[1]))); } hvel_err = math::max(hvel_err, vel_err_conservative); } *ekf_evh = hvel_err; *ekf_evv = sqrtf(P[6][6]); } /* Returns the following vehicle control limits required by the estimator to keep within sensor limitations. vxy_max : Maximum ground relative horizontal speed (meters/sec). NaN when limiting is not needed. vz_max : Maximum ground relative vertical speed (meters/sec). NaN when limiting is not needed. hagl_min : Minimum height above ground (meters). NaN when limiting is not needed. hagl_max : Maximum height above ground (meters). NaN when limiting is not needed. */ void Ekf::get_ekf_ctrl_limits(float *vxy_max, float *vz_max, float *hagl_min, float *hagl_max) { // Calculate range finder limits float rangefinder_hagl_min = _rng_valid_min_val; // Allow use of 75% of rangefinder maximum range to allow for angular motion float rangefinder_hagl_max = 0.75f * _rng_valid_max_val; // Calculate optical flow limits // Allow ground relative velocity to use 50% of available flow sensor range to allow for angular motion float flow_vxy_max = fmaxf(0.5f * _flow_max_rate * (_terrain_vpos - _state.pos(2)), 0.0f); float flow_hagl_min = _flow_min_distance; float flow_hagl_max = _flow_max_distance; // TODO : calculate visual odometry limits bool relying_on_rangefinder = _control_status.flags.rng_hgt && !_params.range_aid; bool relying_on_optical_flow = _control_status.flags.opt_flow && !(_control_status.flags.gps || _control_status.flags.ev_pos || _control_status.flags.ev_vel); // Do not require limiting by default *vxy_max = NAN; *vz_max = NAN; *hagl_min = NAN; *hagl_max = NAN; // Keep within range sensor limit when using rangefinder as primary height source if (relying_on_rangefinder) { *vxy_max = NAN; *vz_max = NAN; *hagl_min = rangefinder_hagl_min; *hagl_max = rangefinder_hagl_max; } // Keep within flow AND range sensor limits when exclusively using optical flow if (relying_on_optical_flow) { *vxy_max = flow_vxy_max; *vz_max = NAN; *hagl_min = fmaxf(rangefinder_hagl_min, flow_hagl_min); *hagl_max = fminf(rangefinder_hagl_max, flow_hagl_max); } } bool Ekf::reset_imu_bias() { if (_imu_sample_delayed.time_us - _last_imu_bias_cov_reset_us < (uint64_t)10e6) { return false; } // Zero the delta angle and delta velocity bias states _state.gyro_bias.zero(); _state.accel_bias.zero(); // Zero the corresponding covariances zeroCols(P, 10, 15); zeroRows(P, 10, 15); // Set the corresponding variances to the values use for initial alignment float dt = FILTER_UPDATE_PERIOD_S; P[12][12] = P[11][11] = P[10][10] = sq(_params.switch_on_gyro_bias * dt); P[15][15] = P[14][14] = P[13][13] = sq(_params.switch_on_accel_bias * dt); _last_imu_bias_cov_reset_us = _imu_sample_delayed.time_us; // Set previous frame values _prev_dvel_bias_var(0) = P[13][13]; _prev_dvel_bias_var(1) = P[14][14]; _prev_dvel_bias_var(2) = P[15][15]; return true; } // get EKF innovation consistency check status information comprising of: // status - a bitmask integer containing the pass/fail status for each EKF measurement innovation consistency check // Innovation Test Ratios - these are the ratio of the innovation to the acceptance threshold. // A value > 1 indicates that the sensor measurement has exceeded the maximum acceptable level and has been rejected by the EKF // Where a measurement type is a vector quantity, eg magnetometer, GPS position, etc, the maximum value is returned. void Ekf::get_innovation_test_status(uint16_t *status, float *mag, float *vel, float *pos, float *hgt, float *tas, float *hagl, float *beta) { // return the integer bitmask containing the consistency check pass/fail status *status = _innov_check_fail_status.value; // return the largest magnetometer innovation test ratio *mag = sqrtf(math::max(_yaw_test_ratio, math::max(math::max(_mag_test_ratio[0], _mag_test_ratio[1]), _mag_test_ratio[2]))); // return the largest NED velocity innovation test ratio *vel = sqrtf(math::max(math::max(_vel_pos_test_ratio[0], _vel_pos_test_ratio[1]), _vel_pos_test_ratio[2])); // return the largest NE position innovation test ratio *pos = sqrtf(math::max(_vel_pos_test_ratio[3], _vel_pos_test_ratio[4])); // return the vertical position innovation test ratio *hgt = sqrtf(_vel_pos_test_ratio[5]); // return the airspeed fusion innovation test ratio *tas = sqrtf(_tas_test_ratio); // return the terrain height innovation test ratio *hagl = sqrtf(_terr_test_ratio); // return the synthetic sideslip innovation test ratio *beta = sqrtf(_beta_test_ratio); } // return a bitmask integer that describes which state estimates are valid void Ekf::get_ekf_soln_status(uint16_t *status) { ekf_solution_status soln_status; soln_status.flags.attitude = _control_status.flags.tilt_align && _control_status.flags.yaw_align && (_fault_status.value == 0); soln_status.flags.velocity_horiz = (_control_status.flags.gps || _control_status.flags.ev_pos|| _control_status.flags.ev_vel || _control_status.flags.opt_flow || (_control_status.flags.fuse_beta && _control_status.flags.fuse_aspd)) && (_fault_status.value == 0); soln_status.flags.velocity_vert = (_control_status.flags.baro_hgt || _control_status.flags.ev_hgt || _control_status.flags.gps_hgt || _control_status.flags.rng_hgt) && (_fault_status.value == 0); soln_status.flags.pos_horiz_rel = (_control_status.flags.gps || _control_status.flags.ev_pos || _control_status.flags.opt_flow) && (_fault_status.value == 0); soln_status.flags.pos_horiz_abs = (_control_status.flags.gps || _control_status.flags.ev_pos) && (_fault_status.value == 0); soln_status.flags.pos_vert_abs = soln_status.flags.velocity_vert; soln_status.flags.pos_vert_agl = isTerrainEstimateValid(); soln_status.flags.const_pos_mode = !soln_status.flags.velocity_horiz; soln_status.flags.pred_pos_horiz_rel = soln_status.flags.pos_horiz_rel; soln_status.flags.pred_pos_horiz_abs = soln_status.flags.pos_horiz_abs; bool gps_vel_innov_bad = (_vel_pos_test_ratio[0] > 1.0f) || (_vel_pos_test_ratio[1] > 1.0f); bool gps_pos_innov_bad = (_vel_pos_test_ratio[3] > 1.0f) || (_vel_pos_test_ratio[4] > 1.0f); bool mag_innov_good = (_mag_test_ratio[0] < 1.0f) && (_mag_test_ratio[1] < 1.0f) && (_mag_test_ratio[2] < 1.0f) && (_yaw_test_ratio < 1.0f); soln_status.flags.gps_glitch = (gps_vel_innov_bad || gps_pos_innov_bad) && mag_innov_good; soln_status.flags.accel_error = _bad_vert_accel_detected; *status = soln_status.value; } // fuse measurement void Ekf::fuse(float *K, float innovation) { for (unsigned i = 0; i < 4; i++) { _state.quat_nominal(i) = _state.quat_nominal(i) - K[i] * innovation; } _state.quat_nominal.normalize(); for (unsigned i = 0; i < 3; i++) { _state.vel(i) = _state.vel(i) - K[i + 4] * innovation; } for (unsigned i = 0; i < 3; i++) { _state.pos(i) = _state.pos(i) - K[i + 7] * innovation; } for (unsigned i = 0; i < 3; i++) { _state.gyro_bias(i) = _state.gyro_bias(i) - K[i + 10] * innovation; } for (unsigned i = 0; i < 3; i++) { _state.accel_bias(i) = _state.accel_bias(i) - K[i + 13] * innovation; } for (unsigned i = 0; i < 3; i++) { _state.mag_I(i) = _state.mag_I(i) - K[i + 16] * innovation; } for (unsigned i = 0; i < 3; i++) { _state.mag_B(i) = _state.mag_B(i) - K[i + 19] * innovation; } for (unsigned i = 0; i < 2; i++) { _state.wind_vel(i) = _state.wind_vel(i) - K[i + 22] * innovation; } } // zero specified range of rows in the state covariance matrix void Ekf::zeroRows(float (&cov_mat)[_k_num_states][_k_num_states], uint8_t first, uint8_t last) { uint8_t row; for (row = first; row <= last; row++) { memset(&cov_mat[row][0], 0, sizeof(cov_mat[0][0]) * 24); } } // zero specified range of columns in the state covariance matrix void Ekf::zeroCols(float (&cov_mat)[_k_num_states][_k_num_states], uint8_t first, uint8_t last) { uint8_t row; for (row = 0; row <= 23; row++) { memset(&cov_mat[row][first], 0, sizeof(cov_mat[0][0]) * (1 + last - first)); } } void Ekf::zeroOffDiag(float (&cov_mat)[_k_num_states][_k_num_states], uint8_t first, uint8_t last) { // save diagonal elements uint8_t row; float variances[_k_num_states]; for (row = first; row <= last; row++) { variances[row] = cov_mat[row][row]; } // zero rows and columns zeroRows(cov_mat, first, last); zeroCols(cov_mat, first, last); // restore diagonals for (row = first; row <= last; row++) { cov_mat[row][row] = variances[row]; } } void Ekf::uncorrelateQuatStates() { // save 4x4 elements uint32_t row; uint32_t col; float variances[4][4]; for (row = 0; row < 4; row++) { for (col = 0; col < 4; col++) { variances[row][col] = P[row][col]; } } // zero rows and columns zeroRows(P, 0, 3); zeroCols(P, 0, 3); // restore 4x4 elements for (row = 0; row < 4; row++) { for (col = 0; col < 4; col++) { P[row][col] = variances[row][col]; } } } void Ekf::setDiag(float (&cov_mat)[_k_num_states][_k_num_states], uint8_t first, uint8_t last, float variance) { // zero rows and columns zeroRows(cov_mat, first, last); zeroCols(cov_mat, first, last); // set diagonals uint8_t row; for (row = first; row <= last; row++) { cov_mat[row][row] = variance; } } bool Ekf::global_position_is_valid() { // return true if the origin is set we are not doing unconstrained free inertial navigation // and have not started using synthetic position observations to constrain drift return (_NED_origin_initialised && !_deadreckon_time_exceeded && !_using_synthetic_position); } // return true if we are totally reliant on inertial dead-reckoning for position void Ekf::update_deadreckoning_status() { bool velPosAiding = (_control_status.flags.gps || _control_status.flags.ev_pos || _control_status.flags.ev_vel) && (((_time_last_imu - _time_last_pos_fuse) <= _params.no_aid_timeout_max) || ((_time_last_imu - _time_last_vel_fuse) <= _params.no_aid_timeout_max) || ((_time_last_imu - _time_last_delpos_fuse) <= _params.no_aid_timeout_max)); bool optFlowAiding = _control_status.flags.opt_flow && ((_time_last_imu - _time_last_of_fuse) <= _params.no_aid_timeout_max); bool airDataAiding = _control_status.flags.wind && ((_time_last_imu - _time_last_arsp_fuse) <= _params.no_aid_timeout_max) && ((_time_last_imu - _time_last_beta_fuse) <= _params.no_aid_timeout_max); _is_wind_dead_reckoning = !velPosAiding && !optFlowAiding && airDataAiding; _is_dead_reckoning = !velPosAiding && !optFlowAiding && !airDataAiding; // record the time we start inertial dead reckoning if (!_is_dead_reckoning) { _time_ins_deadreckon_start = _time_last_imu - _params.no_aid_timeout_max; } // report if we have been deadreckoning for too long _deadreckon_time_exceeded = ((_time_last_imu - _time_ins_deadreckon_start) > (unsigned)_params.valid_timeout_max); } // perform a vector cross product Vector3f EstimatorInterface::cross_product(const Vector3f &vecIn1, const Vector3f &vecIn2) { Vector3f vecOut; vecOut(0) = vecIn1(1) * vecIn2(2) - vecIn1(2) * vecIn2(1); vecOut(1) = vecIn1(2) * vecIn2(0) - vecIn1(0) * vecIn2(2); vecOut(2) = vecIn1(0) * vecIn2(1) - vecIn1(1) * vecIn2(0); return vecOut; } // calculate the inverse rotation matrix from a quaternion rotation // this produces the inverse rotation to that produced by the math library quaternion to Dcmf operator Matrix3f EstimatorInterface::quat_to_invrotmat(const Quatf &quat) { float q00 = quat(0) * quat(0); float q11 = quat(1) * quat(1); float q22 = quat(2) * quat(2); float q33 = quat(3) * quat(3); float q01 = quat(0) * quat(1); float q02 = quat(0) * quat(2); float q03 = quat(0) * quat(3); float q12 = quat(1) * quat(2); float q13 = quat(1) * quat(3); float q23 = quat(2) * quat(3); Matrix3f dcm; dcm(0, 0) = q00 + q11 - q22 - q33; dcm(1, 1) = q00 - q11 + q22 - q33; dcm(2, 2) = q00 - q11 - q22 + q33; dcm(1, 0) = 2.0f * (q12 - q03); dcm(2, 0) = 2.0f * (q13 + q02); dcm(0, 1) = 2.0f * (q12 + q03); dcm(2, 1) = 2.0f * (q23 - q01); dcm(0, 2) = 2.0f * (q13 - q02); dcm(1, 2) = 2.0f * (q23 + q01); return dcm; } // calculate the variances for the rotation vector equivalent Vector3f Ekf::calcRotVecVariances() { Vector3f rot_var_vec; float q0, q1, q2, q3; if (_state.quat_nominal(0) >= 0.0f) { q0 = _state.quat_nominal(0); q1 = _state.quat_nominal(1); q2 = _state.quat_nominal(2); q3 = _state.quat_nominal(3); } else { q0 = -_state.quat_nominal(0); q1 = -_state.quat_nominal(1); q2 = -_state.quat_nominal(2); q3 = -_state.quat_nominal(3); } float t2 = q0*q0; float t3 = acosf(q0); float t4 = -t2+1.0f; float t5 = t2-1.0f; if ((t4 > 1e-9f) && (t5 < -1e-9f)) { float t6 = 1.0f/t5; float t7 = q1*t6*2.0f; float t8 = 1.0f/powf(t4,1.5f); float t9 = q0*q1*t3*t8*2.0f; float t10 = t7+t9; float t11 = 1.0f/sqrtf(t4); float t12 = q2*t6*2.0f; float t13 = q0*q2*t3*t8*2.0f; float t14 = t12+t13; float t15 = q3*t6*2.0f; float t16 = q0*q3*t3*t8*2.0f; float t17 = t15+t16; rot_var_vec(0) = t10*(P[0][0]*t10+P[1][0]*t3*t11*2.0f)+t3*t11*(P[0][1]*t10+P[1][1]*t3*t11*2.0f)*2.0f; rot_var_vec(1) = t14*(P[0][0]*t14+P[2][0]*t3*t11*2.0f)+t3*t11*(P[0][2]*t14+P[2][2]*t3*t11*2.0f)*2.0f; rot_var_vec(2) = t17*(P[0][0]*t17+P[3][0]*t3*t11*2.0f)+t3*t11*(P[0][3]*t17+P[3][3]*t3*t11*2.0f)*2.0f; } else { rot_var_vec(0) = 4.0f * P[1][1]; rot_var_vec(1) = 4.0f * P[2][2]; rot_var_vec(2) = 4.0f * P[3][3]; } return rot_var_vec; } // initialise the quaternion covariances using rotation vector variances void Ekf::initialiseQuatCovariances(Vector3f &rot_vec_var) { // calculate an equivalent rotation vector from the quaternion float q0,q1,q2,q3; if (_state.quat_nominal(0) >= 0.0f) { q0 = _state.quat_nominal(0); q1 = _state.quat_nominal(1); q2 = _state.quat_nominal(2); q3 = _state.quat_nominal(3); } else { q0 = -_state.quat_nominal(0); q1 = -_state.quat_nominal(1); q2 = -_state.quat_nominal(2); q3 = -_state.quat_nominal(3); } float delta = 2.0f*acosf(q0); float scaler = (delta/sinf(delta*0.5f)); float rotX = scaler*q1; float rotY = scaler*q2; float rotZ = scaler*q3; // autocode generated using matlab symbolic toolbox float t2 = rotX*rotX; float t4 = rotY*rotY; float t5 = rotZ*rotZ; float t6 = t2+t4+t5; if (t6 > 1e-9f) { float t7 = sqrtf(t6); float t8 = t7*0.5f; float t3 = sinf(t8); float t9 = t3*t3; float t10 = 1.0f/t6; float t11 = 1.0f/sqrtf(t6); float t12 = cosf(t8); float t13 = 1.0f/powf(t6,1.5f); float t14 = t3*t11; float t15 = rotX*rotY*t3*t13; float t16 = rotX*rotZ*t3*t13; float t17 = rotY*rotZ*t3*t13; float t18 = t2*t10*t12*0.5f; float t27 = t2*t3*t13; float t19 = t14+t18-t27; float t23 = rotX*rotY*t10*t12*0.5f; float t28 = t15-t23; float t20 = rotY*rot_vec_var(1)*t3*t11*t28*0.5f; float t25 = rotX*rotZ*t10*t12*0.5f; float t31 = t16-t25; float t21 = rotZ*rot_vec_var(2)*t3*t11*t31*0.5f; float t22 = t20+t21-rotX*rot_vec_var(0)*t3*t11*t19*0.5f; float t24 = t15-t23; float t26 = t16-t25; float t29 = t4*t10*t12*0.5f; float t34 = t3*t4*t13; float t30 = t14+t29-t34; float t32 = t5*t10*t12*0.5f; float t40 = t3*t5*t13; float t33 = t14+t32-t40; float t36 = rotY*rotZ*t10*t12*0.5f; float t39 = t17-t36; float t35 = rotZ*rot_vec_var(2)*t3*t11*t39*0.5f; float t37 = t15-t23; float t38 = t17-t36; float t41 = rot_vec_var(0)*(t15-t23)*(t16-t25); float t42 = t41-rot_vec_var(1)*t30*t39-rot_vec_var(2)*t33*t39; float t43 = t16-t25; float t44 = t17-t36; // zero all the quaternion covariances zeroRows(P, 0, 3); zeroCols(P, 0, 3); // Update the quaternion internal covariances using auto-code generated using matlab symbolic toolbox P[0][0] = rot_vec_var(0)*t2*t9*t10*0.25f+rot_vec_var(1)*t4*t9*t10*0.25f+rot_vec_var(2)*t5*t9*t10*0.25f; P[0][1] = t22; P[0][2] = t35+rotX*rot_vec_var(0)*t3*t11*(t15-rotX*rotY*t10*t12*0.5f)*0.5f-rotY*rot_vec_var(1)*t3*t11*t30*0.5f; P[0][3] = rotX*rot_vec_var(0)*t3*t11*(t16-rotX*rotZ*t10*t12*0.5f)*0.5f+rotY*rot_vec_var(1)*t3*t11*(t17-rotY*rotZ*t10*t12*0.5f)*0.5f-rotZ*rot_vec_var(2)*t3*t11*t33*0.5f; P[1][0] = t22; P[1][1] = rot_vec_var(0)*(t19*t19)+rot_vec_var(1)*(t24*t24)+rot_vec_var(2)*(t26*t26); P[1][2] = rot_vec_var(2)*(t16-t25)*(t17-rotY*rotZ*t10*t12*0.5f)-rot_vec_var(0)*t19*t28-rot_vec_var(1)*t28*t30; P[1][3] = rot_vec_var(1)*(t15-t23)*(t17-rotY*rotZ*t10*t12*0.5f)-rot_vec_var(0)*t19*t31-rot_vec_var(2)*t31*t33; P[2][0] = t35-rotY*rot_vec_var(1)*t3*t11*t30*0.5f+rotX*rot_vec_var(0)*t3*t11*(t15-t23)*0.5f; P[2][1] = rot_vec_var(2)*(t16-t25)*(t17-t36)-rot_vec_var(0)*t19*t28-rot_vec_var(1)*t28*t30; P[2][2] = rot_vec_var(1)*(t30*t30)+rot_vec_var(0)*(t37*t37)+rot_vec_var(2)*(t38*t38); P[2][3] = t42; P[3][0] = rotZ*rot_vec_var(2)*t3*t11*t33*(-0.5f)+rotX*rot_vec_var(0)*t3*t11*(t16-t25)*0.5f+rotY*rot_vec_var(1)*t3*t11*(t17-t36)*0.5f; P[3][1] = rot_vec_var(1)*(t15-t23)*(t17-t36)-rot_vec_var(0)*t19*t31-rot_vec_var(2)*t31*t33; P[3][2] = t42; P[3][3] = rot_vec_var(2)*(t33*t33)+rot_vec_var(0)*(t43*t43)+rot_vec_var(1)*(t44*t44); } else { // the equations are badly conditioned so use a small angle approximation P[0][0] = 0.0f; P[0][1] = 0.0f; P[0][2] = 0.0f; P[0][3] = 0.0f; P[1][0] = 0.0f; P[1][1] = 0.25f * rot_vec_var(0); P[1][2] = 0.0f; P[1][3] = 0.0f; P[2][0] = 0.0f; P[2][1] = 0.0f; P[2][2] = 0.25f * rot_vec_var(1); P[2][3] = 0.0f; P[3][0] = 0.0f; P[3][1] = 0.0f; P[3][2] = 0.0f; P[3][3] = 0.25f * rot_vec_var(2); } } void Ekf::setControlBaroHeight() { _control_status.flags.baro_hgt = true; _control_status.flags.gps_hgt = false; _control_status.flags.rng_hgt = false; _control_status.flags.ev_hgt = false; } void Ekf::setControlRangeHeight() { _control_status.flags.rng_hgt = true; _control_status.flags.baro_hgt = false; _control_status.flags.gps_hgt = false; _control_status.flags.ev_hgt = false; } void Ekf::setControlGPSHeight() { _control_status.flags.gps_hgt = true; _control_status.flags.baro_hgt = false; _control_status.flags.rng_hgt = false; _control_status.flags.ev_hgt = false; } void Ekf::setControlEVHeight() { _control_status.flags.ev_hgt = true; _control_status.flags.baro_hgt = false; _control_status.flags.gps_hgt = false; _control_status.flags.rng_hgt = false; } // update the estimated misalignment between the EV navigation frame and the EKF navigation frame // and calculate a rotation matrix which rotates EV measurements into the EKF's navigation frame void Ekf::calcExtVisRotMat() { // Calculate the quaternion delta that rotates from the EV to the EKF reference frame at the EKF fusion time horizon. Quatf q_error = _state.quat_nominal * _ev_sample_delayed.quat.inversed(); q_error.normalize(); // convert to a delta angle and apply a spike and low pass filter Vector3f rot_vec = q_error.to_axis_angle(); float rot_vec_norm = rot_vec.norm(); if (rot_vec_norm > 1e-6f) { // apply an input limiter to protect from spikes Vector3f _input_delta_vec = rot_vec - _ev_rot_vec_filt; float input_delta_len = _input_delta_vec.norm(); if (input_delta_len > 0.1f) { rot_vec = _ev_rot_vec_filt + _input_delta_vec * (0.1f / input_delta_len); } // Apply a first order IIR low pass filter const float omega_lpf_us = 0.2e-6f; // cutoff frequency in rad/uSec float alpha = math::constrain(omega_lpf_us * (float)(_time_last_imu - _ev_rot_last_time_us), 0.0f, 1.0f); _ev_rot_last_time_us = _time_last_imu; _ev_rot_vec_filt = _ev_rot_vec_filt * (1.0f - alpha) + rot_vec * alpha; } // convert filtered vector to a quaternion and then to a rotation matrix q_error.from_axis_angle(_ev_rot_vec_filt); _ev_rot_mat = Dcmf(q_error); // rotation from EV reference to EKF reference } // reset the estimated misalignment between the EV navigation frame and the EKF navigation frame // and update the rotation matrix which rotates EV measurements into the EKF's navigation frame void Ekf::resetExtVisRotMat() { // Calculate the quaternion delta that rotates from the EV to the EKF reference frame at the EKF fusion time horizon. Quatf q_error = _state.quat_nominal * _ev_sample_delayed.quat.inversed(); q_error.normalize(); // convert to a delta angle and reset Vector3f rot_vec = q_error.to_axis_angle(); float rot_vec_norm = rot_vec.norm(); if (rot_vec_norm > 1e-9f) { _ev_rot_vec_filt = rot_vec; } else { _ev_rot_vec_filt.zero(); } // reset the rotation matrix _ev_rot_mat = Dcmf(q_error); // rotation from EV reference to EKF reference } // return the quaternions for the rotation from External Vision system reference frame to the EKF reference frame void Ekf::get_ev2ekf_quaternion(float *quat) { Quatf quat_ev2ekf; quat_ev2ekf.from_axis_angle(_ev_rot_vec_filt); for (unsigned i = 0; i < 4; i++) { quat[i] = quat_ev2ekf(i); } } // Increase the yaw error variance of the quaternions // Argument is additional yaw variance in rad**2 void Ekf::increaseQuatYawErrVariance(float yaw_variance) { // See DeriveYawResetEquations.m for derivation which produces code fragments in C_code4.txt file // The auto-code was cleaned up and had terms multiplied by zero removed to give the following: // Intermediate variables float SG[3]; SG[0] = sq(_state.quat_nominal(0)) - sq(_state.quat_nominal(1)) - sq(_state.quat_nominal(2)) + sq(_state.quat_nominal(3)); SG[1] = 2*_state.quat_nominal(0)*_state.quat_nominal(2) - 2*_state.quat_nominal(1)*_state.quat_nominal(3); SG[2] = 2*_state.quat_nominal(0)*_state.quat_nominal(1) + 2*_state.quat_nominal(2)*_state.quat_nominal(3); float SQ[4]; SQ[0] = 0.5f * ((_state.quat_nominal(1)*SG[0]) - (_state.quat_nominal(0)*SG[2]) + (_state.quat_nominal(3)*SG[1])); SQ[1] = 0.5f * ((_state.quat_nominal(0)*SG[1]) - (_state.quat_nominal(2)*SG[0]) + (_state.quat_nominal(3)*SG[2])); SQ[2] = 0.5f * ((_state.quat_nominal(3)*SG[0]) - (_state.quat_nominal(1)*SG[1]) + (_state.quat_nominal(2)*SG[2])); SQ[3] = 0.5f * ((_state.quat_nominal(0)*SG[0]) + (_state.quat_nominal(1)*SG[2]) + (_state.quat_nominal(2)*SG[1])); // Limit yaw variance increase to prevent a badly conditioned covariance matrix yaw_variance = fminf(yaw_variance, 1.0e-2f); // Add covariances for additonal yaw uncertainty to existing covariances. // This assumes that the additional yaw error is uncorrrelated to existing errors P[0][0] += yaw_variance*sq(SQ[2]); P[0][1] += yaw_variance*SQ[1]*SQ[2]; P[1][1] += yaw_variance*sq(SQ[1]); P[0][2] += yaw_variance*SQ[0]*SQ[2]; P[1][2] += yaw_variance*SQ[0]*SQ[1]; P[2][2] += yaw_variance*sq(SQ[0]); P[0][3] -= yaw_variance*SQ[2]*SQ[3]; P[1][3] -= yaw_variance*SQ[1]*SQ[3]; P[2][3] -= yaw_variance*SQ[0]*SQ[3]; P[3][3] += yaw_variance*sq(SQ[3]); P[1][0] += yaw_variance*SQ[1]*SQ[2]; P[2][0] += yaw_variance*SQ[0]*SQ[2]; P[2][1] += yaw_variance*SQ[0]*SQ[1]; P[3][0] -= yaw_variance*SQ[2]*SQ[3]; P[3][1] -= yaw_variance*SQ[1]*SQ[3]; P[3][2] -= yaw_variance*SQ[0]*SQ[3]; } // save covariance data for re-use when auto-switching between heading and 3-axis fusion void Ekf::save_mag_cov_data() { // save variances for the D earth axis and XYZ body axis field for (uint8_t index = 0; index <= 3; index ++) { _saved_mag_bf_variance[index] = P[index + 18][index + 18]; } // save the NE axis covariance sub-matrix for (uint8_t row = 0; row <= 1; row ++) { for (uint8_t col = 0; col <= 1; col ++) { _saved_mag_ef_covmat[row][col] = P[row + 16][col + 16]; } } } float Ekf::kahanSummation(float sum_previous, float input, float &accumulator) const { float y = input - accumulator; float t = sum_previous + y; accumulator = (t - sum_previous) - y; return t; }