""" This script calculates the observation scalars (H matrix) for fusing optical flow measurements for terrain estimation. @author: roman """ from sympy import * # q: quaternion describing rotation from frame 1 to frame 2 # returns a rotation matrix derived form q which describes the same # rotation def quat2Rot(q): q0 = q[0] q1 = q[1] q2 = q[2] q3 = q[3] Rot = Matrix([[q0**2 + q1**2 - q2**2 - q3**2, 2*(q1*q2 - q0*q3), 2*(q1*q3 + q0*q2)], [2*(q1*q2 + q0*q3), q0**2 - q1**2 + q2**2 - q3**2, 2*(q2*q3 - q0*q1)], [2*(q1*q3-q0*q2), 2*(q2*q3 + q0*q1), q0**2 - q1**2 - q2**2 + q3**2]]) return Rot # take an expression calculated by the cse() method and write the expression # into a text file in C format def write_simplified(P_touple, filename, out_name): subs = P_touple[0] P = Matrix(P_touple[1]) fd = open(filename, 'a') is_vector = P.shape[0] == 1 or P.shape[1] == 1 # write sub expressions for index, item in enumerate(subs): fd.write('float ' + str(item[0]) + ' = ' + str(item[1]) + ';\n') # write actual matrix values fd.write('\n') if not is_vector: iterator = range(0,sqrt(len(P)), 1) for row in iterator: for column in iterator: fd.write(out_name + '(' + str(row) + ',' + str(column) + ') = ' + str(P[row, column]) + ';\n') else: iterator = range(0, len(P), 1) for item in iterator: fd.write(out_name + '(' + str(item) + ') = ' + str(P[item]) + ';\n') fd.write('\n\n') fd.close() ########## Symbolic variable definition ####################################### # vehicle velocity v_x = Symbol("v_x", real=True) # vehicle body x velocity v_y = Symbol("v_y", real=True) # vehicle body y velocity # unit quaternion describing vehicle attitude, qw is real part qw = Symbol("q0", real=True) qx = Symbol("q1", real=True) qy = Symbol("q2", real=True) qz = Symbol("q3", real=True) q_att = Matrix([qw, qx, qy, qz]) # terrain vertial position in local NED frame _terrain_vpos = Symbol("_terrain_vpos", real=True) _terrain_var = Symbol("_terrain_var", real=True) # vehicle vertical position in local NED frame pos_z = Symbol("z", real=True) R_body_to_earth = quat2Rot(q_att) # Optical flow around x axis flow_x = -v_y / (_terrain_vpos - pos_z) * R_body_to_earth[2,2] # Calculate observation scalar H_x = Matrix([flow_x]).jacobian(Matrix([_terrain_vpos])) H_x_simple = cse(H_x, symbols('t0:30')) # Optical flow around y axis flow_y = v_x / (_terrain_vpos - pos_z) * R_body_to_earth[2,2] # Calculate observation scalar H_y = Matrix([flow_y]).jacobian(Matrix([_terrain_vpos])) H_y_simple = cse(H_y, symbols('t0:30')) write_simplified(H_x_simple, "flow_x_observation.txt", "Hx") write_simplified(H_y_simple, "flow_y_observation.txt", "Hy")