# -*- coding: utf-8 -*- """ Created on Tue Nov 1 19:14:39 2016 @author: roman """ from sympy import * # q: quaternion describing rotation from frame 1 to frame 2 # returns a rotation matrix derived form q which describes the same # rotation def quat2Rot(q): q0 = q[0] q1 = q[1] q2 = q[2] q3 = q[3] Rot = Matrix([[q0**2 + q1**2 - q2**2 - q3**2, 2*(q1*q2 - q0*q3), 2*(q1*q3 + q0*q2)], [2*(q1*q2 + q0*q3), q0**2 - q1**2 + q2**2 - q3**2, 2*(q2*q3 - q0*q1)], [2*(q1*q3-q0*q2), 2*(q2*q3 + q0*q1), q0**2 - q1**2 - q2**2 + q3**2]]) return Rot # take an expression calculated by the cse() method and write the expression # into a text file in C format def write_simplified(P_touple, filename, out_name): subs = P_touple[0] P = Matrix(P_touple[1]) fd = open(filename, 'a') is_vector = P.shape[0] == 1 or P.shape[1] == 1 # write sub expressions for index, item in enumerate(subs): fd.write('float ' + str(item[0]) + ' = ' + str(item[1]) + ';\n') # write actual matrix values fd.write('\n') if not is_vector: iterator = range(0,sqrt(len(P)), 1) for row in iterator: for column in iterator: fd.write(out_name + '(' + str(row) + ',' + str(column) + ') = ' + str(P[row, column]) + ';\n') else: iterator = range(0, len(P), 1) for item in iterator: fd.write(out_name + '(' + str(item) + ') = ' + str(P[item]) + ';\n') fd.write('\n\n') fd.close() ########## Symbolic variable definition ####################################### # model state w_n = Symbol("w_n", real=True) # wind in north direction w_e = Symbol("w_e", real=True) # wind in east direction k_tas = Symbol("k_tas", real=True) # true airspeed scale factor state = Matrix([w_n, w_e, k_tas]) # process noise q_w = Symbol("q_w", real=True) # process noise for wind states q_k_tas = Symbol("q_k_tas", real=True) # process noise for airspeed scale state # airspeed measurement noise r_tas = Symbol("r_tas", real=True) # sideslip measurement noise r_beta = Symbol("r_beta", real=True) # true airspeed measurement tas_meas = Symbol("tas_meas", real=True) # ground velocity variance v_n_var = Symbol("v_n_var", real=True) v_e_var = Symbol("v_e_var", real=True) #################### time varying parameters ################################## # vehicle velocity v_n = Symbol("v_n", real=True) # north velocity in earth fixed frame v_e = Symbol("v_e", real=True) # east velocity in earth fixed frame v_d = Symbol("v_d", real=True) # down velocity in earth fixed frame # unit quaternion describing vehicle attitude, qw is real part qw = Symbol("q_att[0]", real=True) qx = Symbol("q_att[1]", real=True) qy = Symbol("q_att[2]", real=True) qz = Symbol("q_att[3]", real=True) q_att = Matrix([qw, qx, qy, qz]) # sampling time in seconds dt = Symbol("dt", real=True) ######################## State and covariance prediction ###################### # state transition matrix is zero because we are using a stationary # process model. We only need to provide formula for covariance prediction # create process noise matrix for covariance prediction state_new = state + Matrix([q_w, q_w, q_k_tas]) * dt Q = diag(q_w, q_k_tas) L = state_new.jacobian([q_w, q_k_tas]) Q = L * Q * Transpose(L) # define symbolic covariance matrix p00 = Symbol('_P(0,0)', real=True) p01 = Symbol('_P(0,1)', real=True) p02 = Symbol('_P(0,2)', real=True) p12 = Symbol('_P(1,2)', real=True) p11 = Symbol('_P(1,1)', real=True) p22 = Symbol('_P(2,2)', real=True) P = Matrix([[p00, p01, p02], [p01, p11, p12], [p02, p12, p22]]) # covariance prediction equation P_next = P + Q # simplify the result and write it to a text file in C format PP_simple = cse(P_next, symbols('SPP0:30')) P_pred = Matrix(PP_simple[1]) write_simplified(PP_simple, "cov_pred.txt", 'P_next') ############################ Measurement update ############################### # airspeed fusion tas_pred = Matrix([((v_n - w_n)**2 + (v_e - w_e)**2 + v_d**2)**0.5]) * k_tas # compute true airspeed observation matrix H_tas = tas_pred.jacobian(state) # simplify the result and write it to a text file in C format H_tas_simple = cse(H_tas, symbols('HH0:30')) write_simplified(H_tas_simple, "airspeed_fusion.txt", 'H_tas') K = P * Transpose(H_tas) denom = H_tas * P * Transpose(H_tas) + Matrix([r_tas]) denom = 1/denom.values()[0] K = K * denom K_simple = cse(K, symbols('KTAS0:30')) write_simplified(K_simple, "airspeed_fusion.txt", "K") P_m = P - K*H_tas*P P_m_simple = cse(P_m, symbols('PM0:50')) write_simplified(P_m_simple, "airspeed_fusion.txt", "P_next") # sideslip fusion # compute relative wind vector in vehicle body frame relative_wind_earth = Matrix([v_n - w_n, v_e - w_e, v_d]) R_body_to_earth = quat2Rot(q_att) relative_wind_body = Transpose(R_body_to_earth) * relative_wind_earth # small angle approximation of side slip model beta_pred = relative_wind_body[1] / relative_wind_body[0] # compute side slip observation matrix H_beta = Matrix([beta_pred]).jacobian(state) # simplify the result and write it to a text file in C format H_beta_simple = cse(H_beta, symbols('HB0:30')) write_simplified(H_beta_simple, "beta_fusion.txt", 'H_beta') K = P * Transpose(H_beta) denom = H_beta * P * Transpose(H_beta) + Matrix([r_beta]) denom = 1/denom.values()[0] K = K*denom K_simple = cse(K, symbols('KB0:30')) write_simplified(K_simple, "beta_fusion.txt", 'K') P_m = P - K*H_beta*P P_m_simple = cse(P_m, symbols('PM0:50')) write_simplified(P_m_simple, "beta_fusion.txt", "P_next") # wind covariance initialisation via velocity # estimate heading from ground velocity heading_est = atan2(v_n, v_e) # calculate wind speed estimate from vehicle ground velocity, heading and # airspeed measurement w_n_est = v_n - tas_meas * cos(heading_est) w_e_est = v_e - tas_meas * sin(heading_est) wind_est = Matrix([w_n_est, w_e_est]) # calculate estimate of state covariance matrix P_wind = diag(v_n_var, v_e_var, r_tas) wind_jac = wind_est.jacobian([v_n, v_e, tas_meas]) wind_jac_simple = cse(wind_jac, symbols('L0:30')) write_simplified(wind_jac_simple, "cov_init.txt", "L")