/**************************************************************************** * * Copyright (c) 2012-2014 PX4 Development Team. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * 3. Neither the name PX4 nor the names of its contributors may be * used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * ****************************************************************************/ /** * @file geo.c * * Geo / math functions to perform geodesic calculations * * @author Thomas Gubler * @author Julian Oes * @author Lorenz Meier * @author Anton Babushkin */ #include "geo.h" #include #include #include #include using matrix::wrap_pi; using matrix::wrap_2pi; /* * Azimuthal Equidistant Projection * formulas according to: http://mathworld.wolfram.com/AzimuthalEquidistantProjection.html */ static struct map_projection_reference_s mp_ref; static struct globallocal_converter_reference_s gl_ref = {0.0f, false}; bool map_projection_global_initialized() { return map_projection_initialized(&mp_ref); } bool map_projection_initialized(const struct map_projection_reference_s *ref) { return ref->init_done; } uint64_t map_projection_global_timestamp() { return map_projection_timestamp(&mp_ref); } uint64_t map_projection_timestamp(const struct map_projection_reference_s *ref) { return ref->timestamp; } // lat_0, lon_0 are expected to be in correct format: -> 47.1234567 and not 471234567 int map_projection_global_init(double lat_0, double lon_0, uint64_t timestamp) { return map_projection_init_timestamped(&mp_ref, lat_0, lon_0, timestamp); } // lat_0, lon_0 are expected to be in correct format: -> 47.1234567 and not 471234567 int map_projection_init_timestamped(struct map_projection_reference_s *ref, double lat_0, double lon_0, uint64_t timestamp) { ref->lat_rad = math::radians(lat_0); ref->lon_rad = math::radians(lon_0); ref->sin_lat = sin(ref->lat_rad); ref->cos_lat = cos(ref->lat_rad); ref->timestamp = timestamp; ref->init_done = true; return 0; } //lat_0, lon_0 are expected to be in correct format: -> 47.1234567 and not 471234567 int map_projection_init(struct map_projection_reference_s *ref, double lat_0, double lon_0) { return map_projection_init_timestamped(ref, lat_0, lon_0, ecl_absolute_time()); } int map_projection_global_reference(double *ref_lat_rad, double *ref_lon_rad) { return map_projection_reference(&mp_ref, ref_lat_rad, ref_lon_rad); } int map_projection_reference(const struct map_projection_reference_s *ref, double *ref_lat_rad, double *ref_lon_rad) { if (!map_projection_initialized(ref)) { return -1; } *ref_lat_rad = ref->lat_rad; *ref_lon_rad = ref->lon_rad; return 0; } int map_projection_global_project(double lat, double lon, float *x, float *y) { return map_projection_project(&mp_ref, lat, lon, x, y); } int map_projection_project(const struct map_projection_reference_s *ref, double lat, double lon, float *x, float *y) { if (!map_projection_initialized(ref)) { return -1; } const double lat_rad = math::radians(lat); const double lon_rad = math::radians(lon); const double sin_lat = sin(lat_rad); const double cos_lat = cos(lat_rad); const double cos_d_lon = cos(lon_rad - ref->lon_rad); const double arg = math::constrain(ref->sin_lat * sin_lat + ref->cos_lat * cos_lat * cos_d_lon, -1.0, 1.0); const double c = acos(arg); double k = 1.0; if (fabs(c) > 0) { k = (c / sin(c)); } *x = static_cast(k * (ref->cos_lat * sin_lat - ref->sin_lat * cos_lat * cos_d_lon) * CONSTANTS_RADIUS_OF_EARTH); *y = static_cast(k * cos_lat * sin(lon_rad - ref->lon_rad) * CONSTANTS_RADIUS_OF_EARTH); return 0; } int map_projection_global_reproject(float x, float y, double *lat, double *lon) { return map_projection_reproject(&mp_ref, x, y, lat, lon); } int map_projection_reproject(const struct map_projection_reference_s *ref, float x, float y, double *lat, double *lon) { if (!map_projection_initialized(ref)) { return -1; } const double x_rad = (double)x / CONSTANTS_RADIUS_OF_EARTH; const double y_rad = (double)y / CONSTANTS_RADIUS_OF_EARTH; const double c = sqrt(x_rad * x_rad + y_rad * y_rad); if (fabs(c) > 0) { const double sin_c = sin(c); const double cos_c = cos(c); const double lat_rad = asin(cos_c * ref->sin_lat + (x_rad * sin_c * ref->cos_lat) / c); const double lon_rad = (ref->lon_rad + atan2(y_rad * sin_c, c * ref->cos_lat * cos_c - x_rad * ref->sin_lat * sin_c)); *lat = math::degrees(lat_rad); *lon = math::degrees(lon_rad); } else { *lat = math::degrees(ref->lat_rad); *lon = math::degrees(ref->lon_rad); } return 0; } int map_projection_global_getref(double *lat_0, double *lon_0) { if (!map_projection_global_initialized()) { return -1; } if (lat_0 != nullptr) { *lat_0 = math::degrees(mp_ref.lat_rad); } if (lon_0 != nullptr) { *lon_0 = math::degrees(mp_ref.lon_rad); } return 0; } int globallocalconverter_init(double lat_0, double lon_0, float alt_0, uint64_t timestamp) { gl_ref.alt = alt_0; if (!map_projection_global_init(lat_0, lon_0, timestamp)) { gl_ref.init_done = true; return 0; } gl_ref.init_done = false; return -1; } bool globallocalconverter_initialized() { return gl_ref.init_done && map_projection_global_initialized(); } int globallocalconverter_tolocal(double lat, double lon, float alt, float *x, float *y, float *z) { if (!map_projection_global_initialized()) { return -1; } map_projection_global_project(lat, lon, x, y); *z = gl_ref.alt - alt; return 0; } int globallocalconverter_toglobal(float x, float y, float z, double *lat, double *lon, float *alt) { if (!map_projection_global_initialized()) { return -1; } map_projection_global_reproject(x, y, lat, lon); *alt = gl_ref.alt - z; return 0; } int globallocalconverter_getref(double *lat_0, double *lon_0, float *alt_0) { if (map_projection_global_initialized() != 0) { return -1; } if (map_projection_global_getref(lat_0, lon_0)) { return -1; } if (alt_0 != nullptr) { *alt_0 = gl_ref.alt; } return 0; } float get_distance_to_next_waypoint(double lat_now, double lon_now, double lat_next, double lon_next) { const double lat_now_rad = math::radians(lat_now); const double lat_next_rad = math::radians(lat_next); const double d_lat = lat_next_rad - lat_now_rad; const double d_lon = math::radians(lon_next) - math::radians(lon_now); const double a = sin(d_lat / 2.0) * sin(d_lat / 2.0) + sin(d_lon / 2.0) * sin(d_lon / 2.0) * cos(lat_now_rad) * cos(lat_next_rad); const double c = atan2(sqrt(a), sqrt(1.0 - a)); return static_cast(CONSTANTS_RADIUS_OF_EARTH * 2.0 * c); } void create_waypoint_from_line_and_dist(double lat_A, double lon_A, double lat_B, double lon_B, float dist, double *lat_target, double *lon_target) { if (fabsf(dist) < FLT_EPSILON) { *lat_target = lat_A; *lon_target = lon_A; } else if (dist >= FLT_EPSILON) { float heading = get_bearing_to_next_waypoint(lat_A, lon_A, lat_B, lon_B); waypoint_from_heading_and_distance(lat_A, lon_A, heading, dist, lat_target, lon_target); } else { float heading = get_bearing_to_next_waypoint(lat_A, lon_A, lat_B, lon_B); heading = wrap_2pi(heading + M_PI_F); waypoint_from_heading_and_distance(lat_A, lon_A, heading, dist, lat_target, lon_target); } } void waypoint_from_heading_and_distance(double lat_start, double lon_start, float bearing, float dist, double *lat_target, double *lon_target) { bearing = wrap_2pi(bearing); double radius_ratio = (double)fabs((double)dist) / CONSTANTS_RADIUS_OF_EARTH; double lat_start_rad = math::radians(lat_start); double lon_start_rad = math::radians(lon_start); *lat_target = asin(sin(lat_start_rad) * cos(radius_ratio) + cos(lat_start_rad) * sin(radius_ratio) * cos((double)bearing)); *lon_target = lon_start_rad + atan2(sin((double)bearing) * sin(radius_ratio) * cos(lat_start_rad), cos(radius_ratio) - sin(lat_start_rad) * sin(*lat_target)); *lat_target = math::degrees(*lat_target); *lon_target = math::degrees(*lon_target); } float get_bearing_to_next_waypoint(double lat_now, double lon_now, double lat_next, double lon_next) { const double lat_now_rad = math::radians(lat_now); const double lat_next_rad = math::radians(lat_next); const double cos_lat_next = cos(lat_next_rad); const double d_lon = math::radians(lon_next - lon_now); /* conscious mix of double and float trig function to maximize speed and efficiency */ const float y = static_cast(sin(d_lon) * cos_lat_next); const float x = static_cast(cos(lat_now_rad) * sin(lat_next_rad) - sin(lat_now_rad) * cos_lat_next * cos(d_lon)); return wrap_pi(atan2f(y, x)); } void get_vector_to_next_waypoint(double lat_now, double lon_now, double lat_next, double lon_next, float *v_n, float *v_e) { const double lat_now_rad = math::radians(lat_now); const double lat_next_rad = math::radians(lat_next); const double d_lon = math::radians(lon_next) - math::radians(lon_now); /* conscious mix of double and float trig function to maximize speed and efficiency */ *v_n = static_cast(CONSTANTS_RADIUS_OF_EARTH * (cos(lat_now_rad) * sin(lat_next_rad) - sin(lat_now_rad) * cos(lat_next_rad) * cos(d_lon))); *v_e = static_cast(CONSTANTS_RADIUS_OF_EARTH * sin(d_lon) * cos(lat_next_rad)); } void get_vector_to_next_waypoint_fast(double lat_now, double lon_now, double lat_next, double lon_next, float *v_n, float *v_e) { double lat_now_rad = math::radians(lat_now); double lon_now_rad = math::radians(lon_now); double lat_next_rad = math::radians(lat_next); double lon_next_rad = math::radians(lon_next); double d_lat = lat_next_rad - lat_now_rad; double d_lon = lon_next_rad - lon_now_rad; /* conscious mix of double and float trig function to maximize speed and efficiency */ *v_n = static_cast(CONSTANTS_RADIUS_OF_EARTH * d_lat); *v_e = static_cast(CONSTANTS_RADIUS_OF_EARTH * d_lon * cos(lat_now_rad)); } void add_vector_to_global_position(double lat_now, double lon_now, float v_n, float v_e, double *lat_res, double *lon_res) { double lat_now_rad = math::radians(lat_now); double lon_now_rad = math::radians(lon_now); *lat_res = math::degrees(lat_now_rad + (double)v_n / CONSTANTS_RADIUS_OF_EARTH); *lon_res = math::degrees(lon_now_rad + (double)v_e / (CONSTANTS_RADIUS_OF_EARTH * cos(lat_now_rad))); } // Additional functions - @author Doug Weibel int get_distance_to_line(struct crosstrack_error_s *crosstrack_error, double lat_now, double lon_now, double lat_start, double lon_start, double lat_end, double lon_end) { // This function returns the distance to the nearest point on the track line. Distance is positive if current // position is right of the track and negative if left of the track as seen from a point on the track line // headed towards the end point. int return_value = -1; // Set error flag, cleared when valid result calculated. crosstrack_error->past_end = false; crosstrack_error->distance = 0.0f; crosstrack_error->bearing = 0.0f; float dist_to_end = get_distance_to_next_waypoint(lat_now, lon_now, lat_end, lon_end); // Return error if arguments are bad if (dist_to_end < 0.1f) { return -1; } float bearing_end = get_bearing_to_next_waypoint(lat_now, lon_now, lat_end, lon_end); float bearing_track = get_bearing_to_next_waypoint(lat_start, lon_start, lat_end, lon_end); float bearing_diff = wrap_pi(bearing_track - bearing_end); // Return past_end = true if past end point of line if (bearing_diff > M_PI_2_F || bearing_diff < -M_PI_2_F) { crosstrack_error->past_end = true; return_value = 0; return return_value; } crosstrack_error->distance = (dist_to_end) * sinf(bearing_diff); if (sinf(bearing_diff) >= 0) { crosstrack_error->bearing = wrap_pi(bearing_track - M_PI_2_F); } else { crosstrack_error->bearing = wrap_pi(bearing_track + M_PI_2_F); } return_value = 0; return return_value; } int get_distance_to_arc(struct crosstrack_error_s *crosstrack_error, double lat_now, double lon_now, double lat_center, double lon_center, float radius, float arc_start_bearing, float arc_sweep) { // This function returns the distance to the nearest point on the track arc. Distance is positive if current // position is right of the arc and negative if left of the arc as seen from the closest point on the arc and // headed towards the end point. // Determine if the current position is inside or outside the sector between the line from the center // to the arc start and the line from the center to the arc end float bearing_sector_start = 0.0f; float bearing_sector_end = 0.0f; float bearing_now = get_bearing_to_next_waypoint(lat_now, lon_now, lat_center, lon_center); int return_value = -1; // Set error flag, cleared when valid result calculated. crosstrack_error->past_end = false; crosstrack_error->distance = 0.0f; crosstrack_error->bearing = 0.0f; // Return error if arguments are bad if (radius < 0.1f) { return return_value; } if (arc_sweep >= 0.0f) { bearing_sector_start = arc_start_bearing; bearing_sector_end = arc_start_bearing + arc_sweep; if (bearing_sector_end > 2.0f * M_PI_F) { bearing_sector_end -= (2 * M_PI_F); } } else { bearing_sector_end = arc_start_bearing; bearing_sector_start = arc_start_bearing - arc_sweep; if (bearing_sector_start < 0.0f) { bearing_sector_start += (2 * M_PI_F); } } bool in_sector = false; // Case where sector does not span zero if (bearing_sector_end >= bearing_sector_start && bearing_now >= bearing_sector_start && bearing_now <= bearing_sector_end) { in_sector = true; } // Case where sector does span zero if (bearing_sector_end < bearing_sector_start && (bearing_now > bearing_sector_start || bearing_now < bearing_sector_end)) { in_sector = true; } // If in the sector then calculate distance and bearing to closest point if (in_sector) { crosstrack_error->past_end = false; float dist_to_center = get_distance_to_next_waypoint(lat_now, lon_now, lat_center, lon_center); if (dist_to_center <= radius) { crosstrack_error->distance = radius - dist_to_center; crosstrack_error->bearing = bearing_now + M_PI_F; } else { crosstrack_error->distance = dist_to_center - radius; crosstrack_error->bearing = bearing_now; } // If out of the sector then calculate dist and bearing to start or end point } else { // Use the approximation that 111,111 meters in the y direction is 1 degree (of latitude) // and 111,111 * cos(latitude) meters in the x direction is 1 degree (of longitude) to // calculate the position of the start and end points. We should not be doing this often // as this function generally will not be called repeatedly when we are out of the sector. double start_disp_x = (double)radius * sin((double)arc_start_bearing); double start_disp_y = (double)radius * cos((double)arc_start_bearing); double end_disp_x = (double)radius * sin((double)wrap_pi(arc_start_bearing + arc_sweep)); double end_disp_y = (double)radius * cos((double)wrap_pi(arc_start_bearing + arc_sweep)); double lon_start = lon_now + start_disp_x / 111111.0; double lat_start = lat_now + start_disp_y * cos(lat_now) / 111111.0; double lon_end = lon_now + end_disp_x / 111111.0; double lat_end = lat_now + end_disp_y * cos(lat_now) / 111111.0; float dist_to_start = get_distance_to_next_waypoint(lat_now, lon_now, lat_start, lon_start); float dist_to_end = get_distance_to_next_waypoint(lat_now, lon_now, lat_end, lon_end); if (dist_to_start < dist_to_end) { crosstrack_error->distance = dist_to_start; crosstrack_error->bearing = get_bearing_to_next_waypoint(lat_now, lon_now, lat_start, lon_start); } else { crosstrack_error->past_end = true; crosstrack_error->distance = dist_to_end; crosstrack_error->bearing = get_bearing_to_next_waypoint(lat_now, lon_now, lat_end, lon_end); } } crosstrack_error->bearing = wrap_pi(crosstrack_error->bearing); return_value = 0; return return_value; } float get_distance_to_point_global_wgs84(double lat_now, double lon_now, float alt_now, double lat_next, double lon_next, float alt_next, float *dist_xy, float *dist_z) { double current_x_rad = lat_next / 180.0 * M_PI; double current_y_rad = lon_next / 180.0 * M_PI; double x_rad = lat_now / 180.0 * M_PI; double y_rad = lon_now / 180.0 * M_PI; double d_lat = x_rad - current_x_rad; double d_lon = y_rad - current_y_rad; double a = sin(d_lat / 2.0) * sin(d_lat / 2.0) + sin(d_lon / 2.0) * sin(d_lon / 2.0) * cos(current_x_rad) * cos(x_rad); double c = 2 * atan2(sqrt(a), sqrt(1 - a)); const float dxy = static_cast(CONSTANTS_RADIUS_OF_EARTH * c); const float dz = static_cast(alt_now - alt_next); *dist_xy = fabsf(dxy); *dist_z = fabsf(dz); return sqrtf(dxy * dxy + dz * dz); } float mavlink_wpm_distance_to_point_local(float x_now, float y_now, float z_now, float x_next, float y_next, float z_next, float *dist_xy, float *dist_z) { float dx = x_now - x_next; float dy = y_now - y_next; float dz = z_now - z_next; *dist_xy = sqrtf(dx * dx + dy * dy); *dist_z = fabsf(dz); return sqrtf(dx * dx + dy * dy + dz * dz); }