/**************************************************************************** * * Copyright (C) 2012, 2014 PX4 Development Team. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * 3. Neither the name PX4 nor the names of its contributors may be * used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * ****************************************************************************/ /** * @file geo.h * * Definition of geo / math functions to perform geodesic calculations * * @author Thomas Gubler * @author Julian Oes * @author Lorenz Meier * @author Anton Babushkin * Additional functions - @author Doug Weibel */ #pragma once #include #include static constexpr float CONSTANTS_ONE_G = 9.80665f; // m/s^2 static constexpr float CONSTANTS_STD_PRESSURE_PA = 101325.0f; // pascals (Pa) static constexpr float CONSTANTS_STD_PRESSURE_KPA = CONSTANTS_STD_PRESSURE_PA / 1000.0f; // kilopascals (kPa) static constexpr float CONSTANTS_STD_PRESSURE_MBAR = CONSTANTS_STD_PRESSURE_PA / 100.0f; // Millibar (mbar) (1 mbar = 100 Pa) static constexpr float CONSTANTS_AIR_DENSITY_SEA_LEVEL_15C = 1.225f; // kg/m^3 static constexpr float CONSTANTS_AIR_GAS_CONST = 287.1f; // J/(kg * K) static constexpr float CONSTANTS_ABSOLUTE_NULL_CELSIUS = -273.15f; // °C static constexpr double CONSTANTS_RADIUS_OF_EARTH = 6371000; // meters (m) static constexpr float CONSTANTS_RADIUS_OF_EARTH_F = CONSTANTS_RADIUS_OF_EARTH; // meters (m) static constexpr float CONSTANTS_EARTH_SPIN_RATE = 7.2921150e-5f; // radians/second (rad/s) // XXX remove struct crosstrack_error_s { bool past_end; // Flag indicating we are past the end of the line/arc segment float distance; // Distance in meters to closest point on line/arc float bearing; // Bearing in radians to closest point on line/arc } ; /* lat/lon are in radians */ struct map_projection_reference_s { uint64_t timestamp; double lat_rad; double lon_rad; double sin_lat; double cos_lat; bool init_done; }; struct globallocal_converter_reference_s { float alt; bool init_done; }; /** * Checks if global projection was initialized * @return true if map was initialized before, false else */ bool map_projection_global_initialized(); /** * Checks if projection given as argument was initialized * @return true if map was initialized before, false else */ bool map_projection_initialized(const struct map_projection_reference_s *ref); /** * Get the timestamp of the global map projection * @return the timestamp of the map_projection */ uint64_t map_projection_global_timestamp(void); /** * Get the timestamp of the map projection given by the argument * @return the timestamp of the map_projection */ uint64_t map_projection_timestamp(const struct map_projection_reference_s *ref); /** * Writes the reference values of the global projection to ref_lat and ref_lon * @return 0 if map_projection_init was called before, -1 else */ int map_projection_global_reference(double *ref_lat_rad, double *ref_lon_rad); /** * Writes the reference values of the projection given by the argument to ref_lat and ref_lon * @return 0 if map_projection_init was called before, -1 else */ int map_projection_reference(const struct map_projection_reference_s *ref, double *ref_lat_rad, double *ref_lon_rad); /** * Initializes the global map transformation. * * Initializes the transformation between the geographic coordinate system and * the azimuthal equidistant plane * @param lat in degrees (47.1234567°, not 471234567°) * @param lon in degrees (8.1234567°, not 81234567°) */ int map_projection_global_init(double lat_0, double lon_0, uint64_t timestamp); /** * Initializes the map transformation given by the argument. * * Initializes the transformation between the geographic coordinate system and * the azimuthal equidistant plane * @param lat in degrees (47.1234567°, not 471234567°) * @param lon in degrees (8.1234567°, not 81234567°) */ int map_projection_init_timestamped(struct map_projection_reference_s *ref, double lat_0, double lon_0, uint64_t timestamp); /** * Initializes the map transformation given by the argument and sets the timestamp to now. * * Initializes the transformation between the geographic coordinate system and * the azimuthal equidistant plane * @param lat in degrees (47.1234567°, not 471234567°) * @param lon in degrees (8.1234567°, not 81234567°) */ int map_projection_init(struct map_projection_reference_s *ref, double lat_0, double lon_0); /** * Transforms a point in the geographic coordinate system to the local * azimuthal equidistant plane using the global projection * @param x north * @param y east * @param lat in degrees (47.1234567°, not 471234567°) * @param lon in degrees (8.1234567°, not 81234567°) * @return 0 if map_projection_init was called before, -1 else */ int map_projection_global_project(double lat, double lon, float *x, float *y); /* Transforms a point in the geographic coordinate system to the local * azimuthal equidistant plane using the projection given by the argument * @param x north * @param y east * @param lat in degrees (47.1234567°, not 471234567°) * @param lon in degrees (8.1234567°, not 81234567°) * @return 0 if map_projection_init was called before, -1 else */ int map_projection_project(const struct map_projection_reference_s *ref, double lat, double lon, float *x, float *y); /** * Transforms a point in the local azimuthal equidistant plane to the * geographic coordinate system using the global projection * * @param x north * @param y east * @param lat in degrees (47.1234567°, not 471234567°) * @param lon in degrees (8.1234567°, not 81234567°) * @return 0 if map_projection_init was called before, -1 else */ int map_projection_global_reproject(float x, float y, double *lat, double *lon); /** * Transforms a point in the local azimuthal equidistant plane to the * geographic coordinate system using the projection given by the argument * * @param x north * @param y east * @param lat in degrees (47.1234567°, not 471234567°) * @param lon in degrees (8.1234567°, not 81234567°) * @return 0 if map_projection_init was called before, -1 else */ int map_projection_reproject(const struct map_projection_reference_s *ref, float x, float y, double *lat, double *lon); /** * Get reference position of the global map projection */ int map_projection_global_getref(double *lat_0, double *lon_0); /** * Initialize the global mapping between global position (spherical) and local position (NED). */ int globallocalconverter_init(double lat_0, double lon_0, float alt_0, uint64_t timestamp); /** * Checks if globallocalconverter was initialized * @return true if map was initialized before, false else */ bool globallocalconverter_initialized(void); /** * Convert from global position coordinates to local position coordinates using the global reference */ int globallocalconverter_tolocal(double lat, double lon, float alt, float *x, float *y, float *z); /** * Convert from local position coordinates to global position coordinates using the global reference */ int globallocalconverter_toglobal(float x, float y, float z, double *lat, double *lon, float *alt); /** * Get reference position of the global to local converter */ int globallocalconverter_getref(double *lat_0, double *lon_0, float *alt_0); /** * Returns the distance to the next waypoint in meters. * * @param lat_now current position in degrees (47.1234567°, not 471234567°) * @param lon_now current position in degrees (8.1234567°, not 81234567°) * @param lat_next next waypoint position in degrees (47.1234567°, not 471234567°) * @param lon_next next waypoint position in degrees (8.1234567°, not 81234567°) */ float get_distance_to_next_waypoint(double lat_now, double lon_now, double lat_next, double lon_next); /** * Creates a new waypoint C on the line of two given waypoints (A, B) at certain distance * from waypoint A * * @param lat_A waypoint A latitude in degrees (47.1234567°, not 471234567°) * @param lon_A waypoint A longitude in degrees (8.1234567°, not 81234567°) * @param lat_B waypoint B latitude in degrees (47.1234567°, not 471234567°) * @param lon_B waypoint B longitude in degrees (8.1234567°, not 81234567°) * @param dist distance of target waypoint from waypoint A in meters (can be negative) * @param lat_target latitude of target waypoint C in degrees (47.1234567°, not 471234567°) * @param lon_target longitude of target waypoint C in degrees (47.1234567°, not 471234567°) */ void create_waypoint_from_line_and_dist(double lat_A, double lon_A, double lat_B, double lon_B, float dist, double *lat_target, double *lon_target); /** * Creates a waypoint from given waypoint, distance and bearing * see http://www.movable-type.co.uk/scripts/latlong.html * * @param lat_start latitude of starting waypoint in degrees (47.1234567°, not 471234567°) * @param lon_start longitude of starting waypoint in degrees (8.1234567°, not 81234567°) * @param bearing in rad * @param distance in meters * @param lat_target latitude of target waypoint in degrees (47.1234567°, not 471234567°) * @param lon_target longitude of target waypoint in degrees (47.1234567°, not 471234567°) */ void waypoint_from_heading_and_distance(double lat_start, double lon_start, float bearing, float dist, double *lat_target, double *lon_target); /** * Returns the bearing to the next waypoint in radians. * * @param lat_now current position in degrees (47.1234567°, not 471234567°) * @param lon_now current position in degrees (8.1234567°, not 81234567°) * @param lat_next next waypoint position in degrees (47.1234567°, not 471234567°) * @param lon_next next waypoint position in degrees (8.1234567°, not 81234567°) */ float get_bearing_to_next_waypoint(double lat_now, double lon_now, double lat_next, double lon_next); void get_vector_to_next_waypoint(double lat_now, double lon_now, double lat_next, double lon_next, float *v_n, float *v_e); void get_vector_to_next_waypoint_fast(double lat_now, double lon_now, double lat_next, double lon_next, float *v_n, float *v_e); void add_vector_to_global_position(double lat_now, double lon_now, float v_n, float v_e, double *lat_res, double *lon_res); int get_distance_to_line(struct crosstrack_error_s *crosstrack_error, double lat_now, double lon_now, double lat_start, double lon_start, double lat_end, double lon_end); int get_distance_to_arc(struct crosstrack_error_s *crosstrack_error, double lat_now, double lon_now, double lat_center, double lon_center, float radius, float arc_start_bearing, float arc_sweep); /* * Calculate distance in global frame */ float get_distance_to_point_global_wgs84(double lat_now, double lon_now, float alt_now, double lat_next, double lon_next, float alt_next, float *dist_xy, float *dist_z); /* * Calculate distance in local frame (NED) */ float mavlink_wpm_distance_to_point_local(float x_now, float y_now, float z_now, float x_next, float y_next, float z_next, float *dist_xy, float *dist_z);