from pathlib import Path from typing import Any, Callable, Literal, Protocol, Self, overload from abc import ABCMeta, abstractmethod from iminuit import Minuit from numpy.typing import ArrayLike from scipy.optimize import OptimizeResult __version__: str class Parameter_64: amplitude: str name: str index: int | None fixed_index: int | None free: bool fixed: bool initial: float bounds: tuple[float, float] def __init__(self, amplitude: str, name: str, index: int) -> None: ... class Parameter_32: amplitude: str name: str index: int | None fixed_index: int | None free: bool fixed: bool initial: float bounds: tuple[float, float] def __init__(self, amplitude: str, name: str, index: int) -> None: ... Parameter = Parameter_64 class PyNode_64(metaclass=ABCMeta): @abstractmethod def precalculate(self, dataset: Dataset_64) -> None: ... @abstractmethod def calculate(self, parameters: list[float], event: Event) -> complex: ... @abstractmethod def parameters(self) -> list[str]: ... class PyNode_32(metaclass=ABCMeta): @abstractmethod def precalculate(self, dataset: Dataset_32) -> None: ... @abstractmethod def calculate(self, parameters: list[float], event: Event) -> complex: ... @abstractmethod def parameters(self) -> list[str]: ... PyNode = PyNode_64 class Node_64: def __init__(self, pynode: PyNode_64) -> None: ... def precalculate(self, dataset: Dataset_64) -> None: ... def calculate(self, parameters: list[float], event: Event) -> complex: ... def parameters(self) -> list[str]: ... def into_amplitude(self, name: str) -> Amplitude_64: ... class Node_32: def __init__(self, pynode: PyNode_32) -> None: ... def precalculate(self, dataset: Dataset_32) -> None: ... def calculate(self, parameters: list[float], event: Event) -> complex: ... def parameters(self) -> list[str]: ... def into_amplitude(self, name: str) -> Amplitude_32: ... Node = Node_64 class Amplitude_64: name: str active: bool cache_position: int parameter_index_start: int def __init__(self, name: str, node: Node_64) -> None: ... def real(self) -> Real_64: ... def imag(self) -> Imag_64: ... def __add__(self, other: Self | Real_64 | Imag_64 | Product_64 | Sum_64) -> Sum_64: ... @overload def __mul__(self, other: Self | Real_64 | Imag_64 | Product_64) -> Product_64: ... @overload def __mul__(self, other: Sum_64) -> Sum_64: ... class Amplitude_32: name: str active: bool cache_position: int parameter_index_start: int def __init__(self, name: str, node: Node_32) -> None: ... def real(self) -> Real_32: ... def imag(self) -> Imag_32: ... def __add__(self, other: Self | Real_32 | Imag_32 | Product_32 | Sum_32) -> Sum_32: ... @overload def __mul__(self, other: Self | Real_32 | Imag_32 | Product_32) -> Product_32: ... @overload def __mul__(self, other: Sum_32) -> Sum_32: ... Amplitude = Amplitude_64 class Real_64: def real(self) -> Real_64: ... def imag(self) -> Imag_64: ... def __add__(self, other: Amplitude_64 | Self | Imag_64 | Product_64 | Sum_64) -> Sum_64: ... @overload def __mul__(self, other: Amplitude_64 | Self | Imag_64 | Product_64) -> Product_64: ... @overload def __mul__(self, other: Sum_64) -> Sum_64: ... class Real_32: def real(self) -> Real_32: ... def imag(self) -> Imag_32: ... def __add__(self, other: Amplitude_32 | Self | Imag_32 | Product_32 | Sum_32) -> Sum_32: ... @overload def __mul__(self, other: Amplitude_32 | Self | Imag_32 | Product_32) -> Product_32: ... @overload def __mul__(self, other: Sum_32) -> Sum_32: ... Real = Real_64 class Imag_64: def real(self) -> Real_64: ... def imag(self) -> Imag_64: ... def __add__(self, other: Amplitude_64 | Real_64 | Self | Product_64 | Sum_64) -> Sum_64: ... @overload def __mul__(self, other: Amplitude_64 | Real_64 | Self | Product_64) -> Product_64: ... @overload def __mul__(self, other: Sum_64) -> Sum_64: ... class Imag_32: def real(self) -> Real_32: ... def imag(self) -> Imag_32: ... def __add__(self, other: Amplitude_32 | Real_32 | Self | Product_32 | Sum_32) -> Sum_32: ... @overload def __mul__(self, other: Amplitude_32 | Real_32 | Self | Product_32) -> Product_32: ... @overload def __mul__(self, other: Sum_32) -> Sum_32: ... Imag = Imag_64 class Product_64: def real(self) -> Real_64: ... def imag(self) -> Imag_64: ... def __add__(self, other: Amplitude_64 | Real_64 | Imag_64 | Self | Sum_64) -> Sum_64: ... @overload def __mul__(self, other: Amplitude_64 | Real_64 | Imag_64) -> Self: ... @overload def __mul__(self, other: Sum_64) -> Sum_64: ... class Product_32: def as_cohsum(self) -> Sum_32: ... def real(self) -> Real_32: ... def imag(self) -> Imag_32: ... def __add__(self, other: Amplitude_32 | Real_32 | Imag_32 | Self | Sum_32) -> Sum_32: ... @overload def __mul__(self, other: Amplitude_32 | Real_32 | Imag_32) -> Self: ... @overload def __mul__(self, other: Sum_32) -> Sum_32: ... Product = Product_64 class Sum_64: def __init__( self, terms: list[Amplitude_64 | Real_64 | Imag_64 | Product_64 | Self] ) -> None: ... def real(self) -> Real_64: ... def imag(self) -> Imag_64: ... def __add__(self, other: Self | Amplitude_64 | Real_64 | Imag_64 | Product_64) -> Self: ... def __mul__(self, other: Amplitude_64 | Real_64 | Imag_64 | Product_64) -> Self: ... class Sum_32: def __init__( self, terms: list[Amplitude_32 | Real_32 | Imag_32 | Product_32 | Sum_32] ) -> None: ... def real(self) -> Real_32: ... def imag(self) -> Imag_32: ... def __add__(self, other: Self | Amplitude_32 | Real_32 | Imag_32 | Product_32) -> Self: ... def __mul__(self, other: Amplitude_32 | Real_32 | Imag_32 | Product_32) -> Self: ... Sum = Sum_64 def Scalar_64(name: str) -> Amplitude_64: ... def Scalar_32(name: str) -> Amplitude_32: ... Scalar = Scalar_64 def CScalar_64(name: str) -> Amplitude_64: ... def CScalar_32(name: str) -> Amplitude_32: ... CScalar = CScalar_64 def PCScalar_64(name: str) -> Amplitude_64: ... def PCScalar_32(name: str) -> Amplitude_32: ... PCScalar = PCScalar_64 def PiecewiseM_64(name: str, bins: int, range: tuple[float, float]) -> Amplitude_64: ... def PiecewiseM_32(name: str, bins: int, range: tuple[float, float]) -> Amplitude_32: ... PiecewiseM = PiecewiseM_64 class NormSqr_64: pass class NormSqr_32: pass NormSqr = NormSqr_64 class Model_64: cohsums: list[NormSqr_64] amplitudes: list[Amplitude_64] parameters: list[Parameter_64] free_parameters: list[Parameter_64] fixed_parameters: list[Parameter_64] bounds: list[tuple[float, float]] initial: list[float] n_free: int def __init__( self, terms: list[Amplitude_64 | Real_64 | Imag_64 | Product_64 | Sum_64] ) -> None: ... def get_parameter(self, amplitude_name: str, parameter_name: str) -> Parameter_64 | None: ... def print_parameters(self) -> None: ... def constrain( self, amplitude_1: str, parameter_1: str, amplitude_2: str, parameter_2: str ) -> None: ... def fix(self, amplitude_1: str, parameter_1: str, value: float) -> None: ... def free(self, amplitude_1: str, parameter_1: str) -> None: ... def set_bounds( self, amplitude_1: str, parameter_1: str, bounds: tuple[float, float] ) -> None: ... def set_initial(self, amplitude_1: str, parameter_1: str, initial: float) -> None: ... def activate(self, amplitude: str) -> None: ... def activate_all(self) -> None: ... def isolate(self, amplitudes: list[str]) -> None: ... def deactivate(self, amplitude: str) -> None: ... def deactivate_all(self) -> None: ... class Model_32: cohsums: list[NormSqr_32] amplitudes: list[Amplitude_32] parameters: list[Parameter_32] free_parameters: list[Parameter_32] fixed_parameters: list[Parameter_32] bounds: list[tuple[float, float]] initial: list[float] n_free: int def __init__( self, terms: list[Amplitude_32 | Real_32 | Imag_32 | Product_32 | Sum_32] ) -> None: ... def get_parameter(self, amplitude_name: str, parameter_name: str) -> Parameter_32 | None: ... def print_parameters(self) -> None: ... def constrain( self, amplitude_1: str, parameter_1: str, amplitude_2: str, parameter_2: str ) -> None: ... def fix(self, amplitude_1: str, parameter_1: str, value: float) -> None: ... def free(self, amplitude_1: str, parameter_1: str) -> None: ... def set_bounds( self, amplitude_1: str, parameter_1: str, bounds: tuple[float, float] ) -> None: ... def set_initial(self, amplitude_1: str, parameter_1: str, initial: float) -> None: ... def activate(self, amplitude: str) -> None: ... def activate_all(self) -> None: ... def isolate(self, amplitudes: list[str]) -> None: ... def deactivate(self, amplitude: str) -> None: ... def deactivate_all(self) -> None: ... Model = Model_64 class FourMomentum_64: e: float px: float py: float pz: float m: float m2: float def __init__(self, e: float, px: float, py: float, pz: float) -> None: ... def set_e(self, value: float) -> None: ... def set_px(self, value: float) -> None: ... def set_py(self, value: float) -> None: ... def set_pz(self, value: float) -> None: ... def boost_along(self, other: FourMomentum_64) -> float: ... def __add__(self, other: FourMomentum_64) -> FourMomentum_64: ... def __sub__(self, other: FourMomentum_64) -> FourMomentum_64: ... class FourMomentum_32: e: float px: float py: float pz: float m: float m2: float def __init__(self, e: float, px: float, py: float, pz: float) -> None: ... def set_e(self, value: float) -> None: ... def set_px(self, value: float) -> None: ... def set_py(self, value: float) -> None: ... def set_pz(self, value: float) -> None: ... def boost_along(self, other: FourMomentum_32) -> float: ... def __add__(self, other: FourMomentum_32) -> FourMomentum_32: ... def __sub__(self, other: FourMomentum_32) -> FourMomentum_32: ... FourMomentum = FourMomentum_64 class Event_64: index: int weight: float beam_p4: FourMomentum_64 recoil_p4: FourMomentum_64 daughter_p4s: list[FourMomentum_64] eps: list[float] class Event_32: index: int weight: float beam_p4: FourMomentum_32 recoil_p4: FourMomentum_32 daughter_p4s: list[FourMomentum_32] eps: list[float] Event = Event_64 class Dataset_64: events: list[Event_64] weights: list[float] def __getitem__(self, index: int) -> Event_64: ... def __len__(self) -> int: ... def __add__(self, other: Dataset_64) -> Dataset_64: ... def split_m( self, range: tuple[float, float], # noqa: A002 bins: int, p1_indices: list[float] | None = None, p2_indices: list[float] | None = None, ) -> tuple[list[list[int]], list[int], list[int]]: ... def get_bootstrap_indices(self, seed: int) -> list[int]: ... @staticmethod def from_events(events: list[Event_64]) -> Dataset_64: ... @staticmethod def from_dict(data: dict[str, list[float | list[float]]]) -> Dataset_64: ... @staticmethod def from_parquet(path: str) -> Dataset_64: ... @staticmethod def from_parquet_eps_in_beam(path: str) -> Dataset_64: ... @staticmethod def from_parquet_with_eps(path: str, eps: list[float]) -> Dataset_64: ... @staticmethod def from_parquet_unpolarized(path: str) -> Dataset_64: ... @staticmethod def from_root(path: str) -> Dataset_64: ... class Dataset_32: events: list[Event_32] weights: list[float] def __getitem__(self, index: int) -> Event_32: ... def __len__(self) -> int: ... def __add__(self, other: Dataset_32) -> Dataset_32: ... def split_m( self, range: tuple[float, float], # noqa: A002 bins: int, p1_indices: list[float] | None = None, p2_indices: list[float] | None = None, ) -> tuple[list[list[int]], list[int], list[int]]: ... def get_bootstrap_indices(self, seed: int) -> list[int]: ... @staticmethod def from_events(events: list[Event_32]) -> Dataset_32: ... @staticmethod def from_dict(data: dict[str, list[float | list[float]]]) -> Dataset_32: ... @staticmethod def from_parquet(path: str) -> Dataset_32: ... @staticmethod def from_parquet_eps_in_beam(path: str) -> Dataset_32: ... @staticmethod def from_parquet_with_eps(path: str, eps: list[float]) -> Dataset_32: ... @staticmethod def from_parquet_unpolarized(path: str) -> Dataset_32: ... @staticmethod def from_root(path: str) -> Dataset_32: ... Dataset = Dataset_64 class Manager_64: model: Model_64 dataset: Dataset_64 root: Amplitude_64 amplitudes: list[Amplitude_64] parameters: list[Parameter_64] free_parameters: list[Parameter_64] fixed_parameters: list[Parameter_64] bounds: list[tuple[float, float]] initial: list[float] n_free: int def __init__(self, model: Model_64, dataset: Dataset_64) -> None: ... def __call__( self, parameters: list[float], *, indices: list[int] | None = None, parallel: bool = True ) -> list[float]: ... def evaluate( self, parameters: list[float], *, indices: list[int] | None = None, parallel: bool = True ) -> list[float]: ... def fix(self, amplitude_1: str, parameter_1: str, value: float) -> None: ... def free(self, amplitude_1: str, parameter_1: str) -> None: ... def set_bounds( self, amplitude_1: str, parameter_1: str, bounds: tuple[float, float] ) -> None: ... def set_initial(self, amplitude_1: str, parameter_1: str, initial: float) -> None: ... def activate(self, amplitude: str) -> None: ... def activate_all(self) -> None: ... def isolate(self, amplitudes: list[str]) -> None: ... def deactivate(self, amplitude: str) -> None: ... def deactivate_all(self) -> None: ... class Manager_32: model: Model_32 dataset: Dataset_32 root: Amplitude_32 amplitudes: list[Amplitude_32] parameters: list[Parameter_32] free_parameters: list[Parameter_32] fixed_parameters: list[Parameter_32] bounds: list[tuple[float, float]] initial: list[float] n_free: int def __init__(self, model: Model_32, dataset: Dataset_32) -> None: ... def __call__( self, parameters: list[float], *, indices: list[int] | None = None, parallel: bool = True ) -> list[float]: ... def evaluate( self, parameters: list[float], *, indices: list[int] | None = None, parallel: bool = True ) -> list[float]: ... def fix(self, amplitude_1: str, parameter_1: str, value: float) -> None: ... def free(self, amplitude_1: str, parameter_1: str) -> None: ... def set_bounds( self, amplitude_1: str, parameter_1: str, bounds: tuple[float, float] ) -> None: ... def set_initial(self, amplitude_1: str, parameter_1: str, initial: float) -> None: ... def activate(self, amplitude: str) -> None: ... def activate_all(self) -> None: ... def isolate(self, amplitudes: list[str]) -> None: ... def deactivate(self, amplitude: str) -> None: ... def deactivate_all(self) -> None: ... Manager = Manager_64 class ExtendedLogLikelihood_64: data_manager: Manager_64 mc_manager: Manager_64 root: Amplitude_64 amplitudes: list[Amplitude_64] parameters: list[Parameter_64] free_parameters: list[Parameter_64] fixed_parameters: list[Parameter_64] bounds: list[tuple[float, float]] initial: list[float] n_free: int def __init__( self, data_manager: Manager | Manager_64, mc_manager: Manager | Manager_64 ) -> None: ... def __call__( self, parameters: list[float], *, indices_data: list[float] | None = None, indices_mc: list[float] | None = None, parallel: bool = True, ) -> float: ... def evaluate( self, parameters: list[float], indices_data: list[int] | None = None, indices_mc: list[int] | None = None, parallel: bool = True, ) -> float: ... def intensity( self, parameters: list[float], dataset_mc: Dataset_64, *, indices_data: list[int] | None = None, indices_mc: list[int] | None = None, parallel: bool = True, ) -> list[float]: ... def fix(self, amplitude_1: str, parameter_1: str, value: float) -> None: ... def free(self, amplitude_1: str, parameter_1: str) -> None: ... def set_bounds( self, amplitude_1: str, parameter_1: str, bounds: tuple[float, float] ) -> None: ... def set_initial(self, amplitude_1: str, parameter_1: str, initial: float) -> None: ... def activate(self, amplitude: str) -> None: ... def activate_all(self) -> None: ... def isolate(self, amplitudes: list[str]) -> None: ... def deactivate(self, amplitude: str) -> None: ... def deactivate_all(self) -> None: ... class ExtendedLogLikelihood_32: data_manager: Manager_32 mc_manager: Manager_32 root: Amplitude_32 amplitudes: list[Amplitude_32] parameters: list[Parameter_32] free_parameters: list[Parameter_32] fixed_parameters: list[Parameter_32] bounds: list[tuple[float, float]] initial: list[float] n_free: int def __init__(self, data_manager: Manager_32, mc_manager: Manager_32) -> None: ... def __call__( self, parameters: list[float], *, indices_data: list[float] | None = None, indices_mc: list[float] | None = None, parallel: bool = True, ) -> float: ... def evaluate( self, parameters: list[float], indices_data: list[int] | None = None, indices_mc: list[int] | None = None, parallel: bool = True, ) -> float: ... def intensity( self, parameters: list[float], dataset_mc: Dataset_32, *, indices_data: list[int] | None = None, indices_mc: list[int] | None = None, parallel: bool = True, ) -> list[float]: ... def fix(self, amplitude_1: str, parameter_1: str, value: float) -> None: ... def free(self, amplitude_1: str, parameter_1: str) -> None: ... def set_bounds( self, amplitude_1: str, parameter_1: str, bounds: tuple[float, float] ) -> None: ... def set_initial(self, amplitude_1: str, parameter_1: str, initial: float) -> None: ... def activate(self, amplitude: str) -> None: ... def activate_all(self) -> None: ... def isolate(self, amplitudes: list[str]) -> None: ... def deactivate(self, amplitude: str) -> None: ... def deactivate_all(self) -> None: ... ExtendedLogLikelihood = ExtendedLogLikelihood_64 class NelderMead_64: def __init__( self, ell: ExtendedLogLikelihood_64, *, simplex_size: float = 1.0, reflection_coeff: float = 1.0, expansion_coeff: float = 2.0, outside_contraction_coeff: float = 0.5, inside_contraction_coeff: float = 0.5, shrink_coeff: float = 0.5, min_simplex_standard_deviation: float = 1e-8, ) -> None: ... @staticmethod def adaptive( ell, *, simplex_size=1.0, min_simplex_standard_deviation=1e-8 ) -> NelderMead_64: ... def initialize(self) -> None: ... def step(self) -> None: ... def check_for_termination(self) -> bool: ... def minimize(self, steps: int) -> None: ... def best(self) -> tuple[list[float], float]: ... class NelderMead_32: def __init__( self, ell: ExtendedLogLikelihood_32, *, simplex_size: float = 1.0, reflection_coeff: float = 1.0, expansion_coeff: float = 2.0, outside_contraction_coeff: float = 0.5, inside_contraction_coeff: float = 0.5, shrink_coeff: float = 0.5, min_simplex_standard_deviation: float = 1e-8, ) -> None: ... @staticmethod def adaptive( ell, *, simplex_size=1.0, min_simplex_standard_deviation=1e-8 ) -> NelderMead_32: ... def initialize(self) -> None: ... def step(self) -> None: ... def check_for_termination(self) -> bool: ... def minimize(self, steps: int) -> None: ... def best(self) -> tuple[list[float], float]: ... NelderMead = NelderMead_64 @overload def open( file_name: str | Path, tree_name: str | None = None, *, pol_in_beam: bool = False, eps: tuple[float, float, float] | None = None, f32: Literal[False] = False, ) -> Dataset_64: ... # noqa: A001 @overload def open( file_name: str | Path, tree_name: str | None = None, *, pol_in_beam: bool = False, eps: tuple[float, float, float] | None = None, f32: Literal[True], ) -> Dataset_32: ... # noqa: A001 def open( file_name: str | Path, tree_name: str | None = None, *, pol_in_beam: bool = False, eps: tuple[float, float, float] | None = None, f32: bool = False, ) -> Dataset_64 | Dataset_32: ... # noqa: A001 ScipyOptMethods = Literal[ 'py-Nelder-Mead', 'py-Powell', 'py-CG', 'py-BFGS', 'py-Newton-CG', 'py-L-BFGS-B', 'py-TNC', 'py-COBYLA', 'py-COBYQA', 'py-SLSQP', 'py-trust-constr', 'py-dogleg', 'py-trust-ncg', 'py-trust-exact', 'py-trust-krylov', ] class ScipyCallable(Protocol): def __call__(self, x: ArrayLike, *args: Any) -> float: ... class ScipyMinCallable(Protocol): def __call__( self, fun: ScipyCallable, x0: ArrayLike, args: tuple[Any], **kwargs_and_options: Any ) -> OptimizeResult: ... RustMethods = Literal['Nelder-Mead', 'Adaptive Nelder-Mead'] RustMinimizer = NelderMead_64 | NelderMead_32 @overload def minimizer( ell: ExtendedLogLikelihood_64, method: Literal['Minuit'], *args: Any, indices_data: list[int] | None = None, indices_mc: list[int] | None = None, minimizer_kwargs: dict[str, Any] | None = None, ) -> Minuit: ... @overload def minimizer( ell: ExtendedLogLikelihood_64, method: ScipyOptMethods | ScipyMinCallable | None, *args: Any, indices_data: list[int] | None = None, indices_mc: list[int] | None = None, minimizer_kwargs: dict[str, Any] | None = None, ) -> Callable[[], OptimizeResult]: ... @overload def minimizer( ell: ExtendedLogLikelihood_64 | ExtendedLogLikelihood_32, method: RustMethods, *args: Any, indices_data: list[int] | None = None, indices_mc: list[int] | None = None, minimizer_kwargs: dict[str, Any] | None = None, ) -> RustMinimizer: ... def minimizer( ell: ExtendedLogLikelihood_64 | ExtendedLogLikelihood_32, method: RustMethods | Literal['Minuit'] | ScipyOptMethods | ScipyMinCallable | None = None, *args: Any, indices_data: list[int] | None = None, indices_mc: list[int] | None = None, minimizer_kwargs: dict[str, Any] | None = None, ) -> Minuit | Callable[[], OptimizeResult] | RustMinimizer: ...