use std::collections::HashMap; use criterion::{black_box, criterion_group, criterion_main, Criterion}; use pystse_safetensors::tensor::*; // Returns a sample data of size 2_MB fn get_sample_data() -> (Vec, Vec, Dtype) { let shape = vec![1000, 500]; let dtype = Dtype::F32; let n: usize = shape.iter().product::() * dtype.size(); // 4 let data = vec![0; n]; (data, shape, dtype) } pub fn bench_serialize(c: &mut Criterion) { let (data, shape, dtype) = get_sample_data(); let n_layers = 5; let mut metadata: HashMap = HashMap::new(); // 2_MB x 5 = 10_MB for i in 0..n_layers { let tensor = TensorView::new(dtype, shape.clone(), &data[..]).unwrap(); metadata.insert(format!("weight{i}"), tensor); } c.bench_function("Serlialize 10_MB", |b| { b.iter(|| { let _serialized = serialize(black_box(&metadata), black_box(&None)); }) }); } pub fn bench_deserialize(c: &mut Criterion) { let (data, shape, dtype) = get_sample_data(); let n_layers = 5; let mut metadata: HashMap = HashMap::new(); // 2_MB x 5 = 10_MB for i in 0..n_layers { let tensor = TensorView::new(dtype, shape.clone(), &data[..]).unwrap(); metadata.insert(format!("weight{i}"), tensor); } let out = serialize(&metadata, &None).unwrap(); c.bench_function("Deserlialize 10_MB", |b| { b.iter(|| { let _deserialized = SafeTensors::deserialize(black_box(&out)).unwrap(); }) }); } criterion_group!(bench_ser, bench_serialize); criterion_group!(bench_de, bench_deserialize); criterion_main!(bench_ser, bench_de);