/* * Copyright (c) 2024 Andrew Rowan Barlow. Licensed under the EUPL-1.2 * or later. You may obtain a copy of the licence at * https://joinup.ec.europa.eu/collection/eupl/eupl-text-eupl-12. A copy * of the EUPL-1.2 licence in English is given in LICENCE.txt which is * found in the root directory of this repository. * * Author: Andrew Rowan Barlow */ use num_complex::{c64, Complex64}; use quantr::{ complex_im, complex_re, states::{ProductState, SuperPosition}, Circuit, Gate, Measurement, }; use std::{error::Error, f64::consts::FRAC_1_SQRT_2}; const ERROR_MARGIN: f64 = 0.00000001f64; #[test] fn simple_qft() -> Result<(), Box> { fastrand::seed(0); let mut qc: Circuit = Circuit::new(3)?; // Apply qft qc.add_repeating_gate(Gate::X, &[1, 2])? .add_gate(Gate::Custom(qft, vec![0, 1], "QFT".to_string()), 2)?; let correct_super = [ complex_re!(FRAC_1_SQRT_2 * 0.5f64), complex_re!(-FRAC_1_SQRT_2 * 0.5f64), complex_im!(-FRAC_1_SQRT_2 * 0.5f64), complex_im!(FRAC_1_SQRT_2 * 0.5f64), c64(-0.25f64, 0.25f64), c64(0.25f64, -0.25f64), c64(0.25f64, 0.25f64), c64(-0.25f64, -0.25f64), ]; if let Measurement::NonObservable(super_pos) = qc.simulate().take_state() { println!("{:?}", super_pos); compare_complex_lists_and_register(&correct_super, &super_pos); } Ok(()) } // A QFT implementation that can be used for other circuits. Note, the output is reveresed, swap // gates are needed. fn qft(input_state: ProductState) -> Option { let qubit_num = input_state.num_qubits(); let mut mini_circuit: Circuit = Circuit::new(qubit_num).unwrap(); for pos in 0..qubit_num { mini_circuit.add_gate(Gate::H, pos).unwrap(); for k in 2..=(qubit_num - pos) { mini_circuit .add_gate(Gate::CRk(k as i32, pos + k - 1), pos) .unwrap(); } } mini_circuit.change_register(input_state.into()).unwrap(); Some(mini_circuit.simulate().take_state().take()) } fn compare_complex_lists_and_register(correct_list: &[Complex64], register: &SuperPosition) { for (i, &comp_num) in register.get_amplitudes().iter().enumerate() { // Make sure that it turns up complex assert!(equal_within_error(comp_num.re, correct_list[i].re)); assert!(equal_within_error(comp_num.im, correct_list[i].im)); } } fn equal_within_error(num: f64, compare_num: f64) -> bool { num < compare_num + ERROR_MARGIN && num > compare_num - ERROR_MARGIN }