/* * Mathlib : A C Library of Special Functions * Copyright (C) 1998 Ross Ihaka * Copyright (C) 2000-2018 The R Core Team * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, a copy is available at * https://www.R-project.org/Licenses/ * * SYNOPSIS * * #include * double fprec(double x, double digits); * * DESCRIPTION * * Returns the value of x rounded to "digits" significant * decimal digits. * * NOTES * * This routine is a translation into C of a Fortran subroutine * by W. Fullerton of Los Alamos Scientific Laboratory. * Some modifications have been made so that the routines * conform to the IEEE 754 standard. */ #include #include "nmath.h" /* Improvements by Martin Maechler, May 1997; further ones, Feb.2000: Replace pow(x, (double)i) by R_pow_di(x, i) {and use int dig} */ #define MAX_DIGITS 22 /* was till R 0.99: DBL_DIG := digits of precision of a double, usually 15 */ /* FIXME: Hmm, have quite a host of these: 1) ./fround.c uses much more (sensibly!) ``instead'' 2) ../main/coerce.c & ../main/deparse.c have DBL_DIG directly 3) ../main/options.c has #define MAX_DIGITS 22 for options(digits) Really should decide on a (config.h dependent?) global MAX_DIGITS. --MM-- */ double fprec(double x, double digits) { double l10, pow10, sgn, p10, P10; int e10, e2, do_round, dig; /* Max.expon. of 10 (=308.2547) */ const static int max10e = (int) (DBL_MAX_EXP * M_LOG10_2); if (ISNAN(x) || ISNAN(digits)) return x + digits; if (!R_FINITE(x)) return x; if (!R_FINITE(digits)) { if(digits > 0.0) return x; else digits = 1.0; } if(x == 0) return x; dig = (int)round(digits); if (dig > MAX_DIGITS) { return x; } else if (dig < 1) dig = 1; sgn = 1.0; if(x < 0.0) { sgn = -sgn; x = -x; } l10 = log10(x); e10 = (int)(dig-1-floor(l10)); if(fabs(l10) < max10e - 2) { p10 = 1.0; if(e10 > max10e) { /* numbers less than 10^(dig-1) * 1e-308 */ p10 = R_pow_di(10., e10-max10e); e10 = max10e; } if(e10 > 0) { /* Try always to have pow >= 1 and so exactly representable */ pow10 = R_pow_di(10., e10); return(sgn*(nearbyint((x*pow10)*p10)/pow10)/p10); } else { pow10 = R_pow_di(10., -e10); return(sgn*(nearbyint((x/pow10))*pow10)); } } else { /* -- LARGE or small -- */ do_round = max10e - l10 >= R_pow_di(10., -dig); e2 = dig + ((e10>0)? 1 : -1) * MAX_DIGITS; p10 = R_pow_di(10., e2); x *= p10; P10 = R_pow_di(10., e10-e2); x *= P10; /*-- p10 * P10 = 10 ^ e10 */ if(do_round) x += 0.5; x = floor(x) / p10; return(sgn*x/P10); } }