/* * Mathlib : A C Library of Special Functions * Copyright (C) 2000-2018 The R Core Team * Copyright (C) 1998 Ross Ihaka * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, a copy is available at * https://www.R-project.org/Licenses/ * * SYNOPSIS * * #include * double lgammafn_sign(double x, int *sgn); * double lgammafn(double x); * * DESCRIPTION * * The function lgammafn computes log|gamma(x)|. The function * lgammafn_sign in addition assigns the sign of the gamma function * to the address in the second argument if this is not NULL. * * NOTES * * This routine is a translation into C of a Fortran subroutine * by W. Fullerton of Los Alamos Scientific Laboratory. * * The accuracy of this routine compares (very) favourably * with those of the Sun Microsystems portable mathematical * library. */ #include "nmath.h" double lgammafn_sign(double x, int *sgn) { double ans, y, sinpiy; #ifdef NOMORE_FOR_THREADS static double xmax = 0.; static double dxrel = 0.; if (xmax == 0) {/* initialize machine dependent constants _ONCE_ */ xmax = d1mach(2)/log(d1mach(2));/* = 2.533 e305 for IEEE double */ dxrel = sqrt (d1mach(4));/* sqrt(Eps) ~ 1.49 e-8 for IEEE double */ } #else /* For IEEE double precision DBL_EPSILON = 2^-52 = 2.220446049250313e-16 : xmax = DBL_MAX / log(DBL_MAX) = 2^1024 / (1024 * log(2)) = 2^1014 / log(2) dxrel = sqrt(DBL_EPSILON) = 2^-26 = 5^26 * 1e-26 (is *exact* below !) */ #define xmax 2.5327372760800758e+305 #define dxrel 1.490116119384765625e-8 #endif if (sgn != NULL) *sgn = 1; #ifdef IEEE_754 if(ISNAN(x)) return x; #endif if (sgn != NULL && x < 0 && fmod(floor(-x), 2.) == 0) *sgn = -1; if (x <= 0 && x == trunc(x)) { /* Negative integer argument */ // No warning: this is the best answer; was ML_WARNING(ME_RANGE, "lgamma"); return ML_POSINF;/* +Inf, since lgamma(x) = log|gamma(x)| */ } y = fabs(x); if (y < 1e-306) return -log(y); // denormalized range, R change if (y <= 10) return log(fabs(gammafn(x))); /* ELSE y = |x| > 10 ---------------------- */ if (y > xmax) { // No warning: +Inf is the best answer return ML_POSINF; } if (x > 0) { /* i.e. y = x > 10 */ #ifdef IEEE_754 if(x > 1e17) return(x*(log(x) - 1.)); else if(x > 4934720.) return(M_LN_SQRT_2PI + (x - 0.5) * log(x) - x); else #endif return M_LN_SQRT_2PI + (x - 0.5) * log(x) - x + lgammacor(x); } /* else: x < -10; y = -x */ sinpiy = fabs(sinpi(y)); if (sinpiy == 0) { /* Negative integer argument === Now UNNECESSARY: caught above */ MATHLIB_WARNING(" ** should NEVER happen! *** [lgamma.c: Neg.int, y=%g]\n",y); ML_WARN_return_NAN; } ans = M_LN_SQRT_PId2 + (x - 0.5) * log(y) - x - log(sinpiy) - lgammacor(y); if(fabs((x - trunc(x - 0.5)) * ans / x) < dxrel) { /* The answer is less than half precision because * the argument is too near a negative integer. */ ML_WARNING(ME_PRECISION, "lgamma"); } return ans; } double lgammafn(double x) { return lgammafn_sign(x, NULL); }