/* * Algorithm AS 275 Appl.Statist. (1992), vol.41, no.2 * original (C) 1992 Royal Statistical Society * * Computes the noncentral chi-squared distribution function with * positive real degrees of freedom df and nonnegative noncentrality * parameter ncp. pnchisq_raw is based on * * Ding, C. G. (1992) * Algorithm AS275: Computing the non-central chi-squared * distribution function. Appl.Statist., 41, 478-482. * Other parts * Copyright (C) 2000-2019 The R Core Team * Copyright (C) 2003-2015 The R Foundation */ #include "nmath.h" #include "dpq.h" /*----------- DEBUGGING ------------- * * make CFLAGS='-DDEBUG_pnch ....' (cd `R-devel RHOME`/src/nmath; gcc -I. -I../../src/include -I../../../R/src/include -I/usr/local/include -DHAVE_CONFIG_H -fopenmp -g -O0 -pedantic -Wall --std=gnu99 -DDEBUG_pnch -DDEBUG_q -Wcast-align -Wclobbered -c ../../../R/src/nmath/pnchisq.c -o pnchisq.o ) * -- Feb.6, 2000 (R pre0.99); M.Maechler: still have * bad precision & non-convergence in some cases (x ~= f, both LARGE) */ #ifdef HAVE_LONG_DOUBLE # define EXP expl # define FABS fabsl # define LOG logl #else # define EXP exp # define FABS fabs # define LOG log #endif static const double _dbl_min_exp = M_LN2 * DBL_MIN_EXP; /*= -708.3964 for IEEE double precision */ double pnchisq(double x, double df, double ncp, int lower_tail, int log_p) { double ans; #ifdef IEEE_754 if (ISNAN(x) || ISNAN(df) || ISNAN(ncp)) return x + df + ncp; if (!R_FINITE(df) || !R_FINITE(ncp)) ML_WARN_return_NAN; #endif if (df < 0. || ncp < 0.) ML_WARN_return_NAN; ans = pnchisq_raw(x, df, ncp, 1e-12, 8*DBL_EPSILON, 1000000, lower_tail, log_p); if (x <= 0. || x == ML_POSINF) return ans; // because it's perfect if(ncp >= 80) { if(lower_tail) { ans = fmin2(ans, R_D__1); /* e.g., pchisq(555, 1.01, ncp = 80) */ } else { /* !lower_tail */ /* since we computed the other tail cancellation is likely */ // FIXME: There are cases where ans == 0. if(!log_p) is perfect if(ans < (log_p ? (-10. * M_LN10) : 1e-10)) ML_WARNING(ME_PRECISION, "pnchisq"); if(!log_p && ans < 0.) ans = 0.; /* Precaution PR#7099 */ } } /* MM: the following "hack" from c51179 (<--> PR#14216, by Jerry Lewis) * -- is "kind of ok" ... but potentially suboptimal: we do log1p(- p(*, , log=FALSE)), * but that p(*, log=FALSE) may already be an exp(.) or even expm1(..) * <---> "in principle" this check should happen there, not here */ if (!log_p || ans < -1e-8) return ans; else { // log_p && ans >= -1e-8 // prob. = exp(ans) is near one: we can do better using the other tail #ifdef DEBUG_pnch REprintf(" pnchisq_raw(*, log_p): ans=%g => 2nd call, other tail\n", ans); #endif ans = pnchisq_raw(x, df, ncp, 1e-12, 8*DBL_EPSILON, 1000000, !lower_tail, FALSE); return log1p(-ans); } } double attribute_hidden pnchisq_raw(double x, double f, double theta /* = ncp */, double errmax, double reltol, int itrmax, Rboolean lower_tail, Rboolean log_p) { double lam, x2, f2, term, bound, f_x_2n, f_2n; double l_lam = -1., l_x = -1.; /* initialized for -Wall */ int n; Rboolean lamSml, tSml, is_r, is_b; LDOUBLE ans, u, v, t, lt, lu =-1; if (x <= 0.) { if(x == 0. && f == 0.) { // chi^2_0(.) has point mass at zero #define _L (-0.5 * theta) // = -lambda return lower_tail ? R_D_exp(_L) : (log_p ? R_Log1_Exp(_L) : -expm1(_L)); } /* x < 0 or {x==0, f > 0} */ return R_DT_0; } if(!R_FINITE(x)) return R_DT_1; /* This is principally for use from qnchisq */ #ifndef MATHLIB_STANDALONE R_CheckUserInterrupt(); #endif if(theta < 80) { /* use 110 for Inf, as ppois(110, 80/2, lower.tail=FALSE) is 2e-20 */ LDOUBLE ans; int i; // Have pgamma(x,s) < x^s / Gamma(s+1) (< and ~= for small x) // ==> pchisq(x, f) = pgamma(x, f/2, 2) = pgamma(x/2, f/2) // < (x/2)^(f/2) / Gamma(f/2+1) < eps // <==> f/2 * log(x/2) - log(Gamma(f/2+1)) < log(eps) ( ~= -708.3964 ) // <==> log(x/2) < 2/f*(log(Gamma(f/2+1)) + log(eps)) // <==> log(x) < log(2) + 2/f*(log(Gamma(f/2+1)) + log(eps)) if(lower_tail && f > 0. && log(x) < M_LN2 + 2/f*(lgamma(f/2. + 1) + _dbl_min_exp)) { // all pchisq(x, f+2*i, lower_tail, FALSE), i=0,...,110 would underflow to 0. // ==> work in log scale double lambda = 0.5 * theta; double sum, sum2, pr = -lambda; sum = sum2 = ML_NEGINF; /* we need to renormalize here: the result could be very close to 1 */ for(i = 0; i < 110; pr += log(lambda) - log(++i)) { sum2 = logspace_add(sum2, pr); sum = logspace_add(sum, pr + pchisq(x, f+2*i, lower_tail, TRUE)); if (sum2 >= -1e-15) /*<=> EXP(sum2) >= 1-1e-15 */ break; } ans = sum - sum2; #ifdef DEBUG_pnch REprintf("pnchisq(x=%g, f=%g, th.=%g); th. < 80, logspace: i=%d, ans=(sum=%g)-(sum2=%g)\n", x,f,theta, i, (double)sum, (double)sum2); #endif return (double) (log_p ? ans : EXP(ans)); } else { LDOUBLE lambda = 0.5 * theta; // < 40 LDOUBLE sum = 0, sum2 = 0, pr = EXP(-lambda); // does this need a feature test? /* we need to renormalize here: the result could be very close to 1 */ for(i = 0; i < 110; pr *= lambda/++i) { // pr == exp(-lambda) lambda^i / i! == dpois(i, lambda) sum2 += pr; // pchisq(*, i, *) is strictly decreasing to 0 for lower_tail=TRUE // and strictly increasing to 1 for lower_tail=FALSE sum += pr * pchisq(x, f+2*i, lower_tail, FALSE); if (sum2 >= 1-1e-15) break; } ans = sum/sum2; #ifdef DEBUG_pnch REprintf("pnchisq(x=%g, f=%g, theta=%g); theta < 80: i=%d, sum=%g, sum2=%g\n", x,f,theta, i, (double)sum, (double)sum2); #endif return (double) (log_p ? LOG(ans) : ans); } } // if(theta < 80) // else: theta == ncp >= 80 -------------------------------------------- #ifdef DEBUG_pnch REprintf("pnchisq(x=%g, f=%g, theta=%g >= 80): ",x,f,theta); #endif // Series expansion ------- FIXME: log_p=TRUE, lower_tail=FALSE only applied at end ==> underflow lam = .5 * theta; // = lambda = ncp/2 lamSml = (-lam < _dbl_min_exp); if(lamSml) { /* MATHLIB_ERROR( "non centrality parameter (= %g) too large for current algorithm", p theta) */ u = 0; lu = -lam;/* == ln(u) */ l_lam = log(lam); } else { u = exp(-lam); } /* evaluate the first term */ v = u; x2 = .5 * x; f2 = .5 * f; f_x_2n = f - x; #ifdef DEBUG_pnch REprintf("-- v=exp(-th/2)=%g, x/2= %g, f/2= %g\n",v,x2,f2); #endif if(f2 * DBL_EPSILON > 0.125 && /* very large f and x ~= f: probably needs */ FABS(t = x2 - f2) < /* another algorithm anyway */ sqrt(DBL_EPSILON) * f2) { /* evade cancellation error */ /* t = exp((1 - t)*(2 - t/(f2 + 1))) / sqrt(2*M_PI*(f2 + 1));*/ lt = (1 - t)*(2 - t/(f2 + 1)) - M_LN_SQRT_2PI - 0.5 * log(f2 + 1); #ifdef DEBUG_pnch REprintf(" (case I) ==> "); #endif } else { /* Usual case 2: careful not to overflow .. : */ lt = f2*log(x2) -x2 - lgammafn(f2 + 1); } #ifdef DEBUG_pnch REprintf(" lt= %g", lt); #endif tSml = (lt < _dbl_min_exp); if(tSml) { #ifdef DEBUG_pnch REprintf(" is very small\n"); #endif if (x > f + theta + 5* sqrt( 2*(f + 2*theta))) { /* x > E[X] + 5* sigma(X) */ return R_DT_1; /* FIXME: could be more accurate than 0. */ } /* else */ l_x = log(x); ans = term = 0.; t = 0; } else { t = EXP(lt); #ifdef DEBUG_pnch REprintf(", t=exp(lt)= %g\n", t); #endif ans = term = (double) (v * t); } for (n = 1, f_2n = f + 2., f_x_2n += 2.; n <= itrmax ; n++, f_2n += 2, f_x_2n += 2) { #ifdef DEBUG_pnch_n REprintf("\n _OL_: n=%d",n); #endif #ifndef MATHLIB_STANDALONE if(n % 1000 == 0) R_CheckUserInterrupt(); #endif /* f_2n === f + 2*n * f_x_2n === f - x + 2*n > 0 <==> (f+2n) > x */ if (f_x_2n > 0) { /* find the error bound and check for convergence */ bound = (double) (t * x / f_x_2n); #ifdef DEBUG_pnch_n REprintf("\n L10: n=%d; term= %g; bound= %g",n,term,bound); #endif is_r = FALSE; /* convergence only if BOTH absolute and relative error < 'bnd' */ if (((is_b = (bound <= errmax)) && (is_r = (term <= reltol * ans)))) { #ifdef DEBUG_pnch REprintf("BREAK out of for(n = 1 ..): n=%d; bound= %g %s, rel.err= %g %s\n", n, bound, (is_b ? "<= errmax" : ""), term/ans, (is_r ? "<= reltol" : "")); #endif break; /* out completely */ } } /* evaluate the next term of the */ /* expansion and then the partial sum */ if(lamSml) { lu += l_lam - log(n); /* u = u* lam / n */ if(lu >= _dbl_min_exp) { /* no underflow anymore ==> change regime */ #ifdef DEBUG_pnch_n REprintf(" n=%d; nomore underflow in u = exp(lu) ==> change\n", n); #endif v = u = EXP(lu); /* the first non-0 'u' */ lamSml = FALSE; } } else { u *= lam / n; v += u; } if(tSml) { lt += l_x - log(f_2n);/* t <- t * (x / f2n) */ if(lt >= _dbl_min_exp) { /* no underflow anymore ==> change regime */ #ifdef DEBUG_pnch REprintf(" n=%d; nomore underflow in t = exp(lt) ==> change\n", n); #endif t = EXP(lt); /* the first non-0 't' */ tSml = FALSE; } } else { t *= x / f_2n; } if(!lamSml && !tSml) { term = (double) (v * t); ans += term; } } /* for(n ...) */ if (n > itrmax) { MATHLIB_WARNING4(_("pnchisq(x=%g, f=%g, theta=%g, ..): not converged in %d iter."), x, f, theta, itrmax); } #ifdef DEBUG_pnch REprintf("\n == L_End: n=%d; term= %g; bound=%g: ans=%Lg\n", n, term, bound, ans); #endif double dans = (double) ans; return R_DT_val(dans); }