/* * Mathlib : A C Library of Special Functions * Copyright (C) 1998 Ross Ihaka * Copyright (C) 2000-2016 The R Core Team * Copyright (C) 2005-2016 The R Foundation * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, a copy is available at * https://www.R-project.org/Licenses/ * * SYNOPSIS * * #include * double qnbinom(double p, double size, double prob, * int lower_tail, int log_p) * * DESCRIPTION * * The quantile function of the negative binomial distribution. * * NOTES * * x = the number of failures before the n-th success * * METHOD * * Uses the Cornish-Fisher Expansion to include a skewness * correction to a normal approximation. This gives an * initial value which never seems to be off by more than * 1 or 2. A search is then conducted of values close to * this initial start point. */ #include "nmath.h" #include "dpq.h" static double do_search(double y, double *z, double p, double n, double pr, double incr) { if(*z >= p) { /* search to the left */ for(;;) { if(y == 0 || (*z = pnbinom(y - incr, n, pr, /*l._t.*/TRUE, /*log_p*/FALSE)) < p) return y; y = fmax2(0, y - incr); } } else { /* search to the right */ for(;;) { y = y + incr; if((*z = pnbinom(y, n, pr, /*l._t.*/TRUE, /*log_p*/FALSE)) >= p) return y; } } } double qnbinom(double p, double size, double prob, int lower_tail, int log_p) { double P, Q, mu, sigma, gamma, z, y; #ifdef IEEE_754 if (ISNAN(p) || ISNAN(size) || ISNAN(prob)) return p + size + prob; #endif /* this happens if specified via mu, size, since prob == size/(size+mu) */ if (prob == 0 && size == 0) return 0; if (prob <= 0 || prob > 1 || size < 0) ML_WARN_return_NAN; if (prob == 1 || size == 0) return 0; R_Q_P01_boundaries(p, 0, ML_POSINF); Q = 1.0 / prob; P = (1.0 - prob) * Q; mu = size * P; sigma = sqrt(size * P * Q); gamma = (Q + P)/sigma; /* Note : "same" code in qpois.c, qbinom.c, qnbinom.c -- * FIXME: This is far from optimal [cancellation for p ~= 1, etc]: */ if(!lower_tail || log_p) { p = R_DT_qIv(p); /* need check again (cancellation!): */ if (p == R_DT_0) return 0; if (p == R_DT_1) return ML_POSINF; } /* temporary hack --- FIXME --- */ if (p + 1.01*DBL_EPSILON >= 1.) return ML_POSINF; /* y := approx.value (Cornish-Fisher expansion) : */ z = qnorm(p, 0., 1., /*lower_tail*/TRUE, /*log_p*/FALSE); y = R_forceint(mu + sigma * (z + gamma * (z*z - 1) / 6)); z = pnbinom(y, size, prob, /*lower_tail*/TRUE, /*log_p*/FALSE); /* fuzz to ensure left continuity: */ p *= 1 - 64*DBL_EPSILON; /* If the C-F value is not too large a simple search is OK */ if(y < 1e5) return do_search(y, &z, p, size, prob, 1); /* Otherwise be a bit cleverer in the search */ { double incr = floor(y * 0.001), oldincr; do { oldincr = incr; y = do_search(y, &z, p, size, prob, incr); incr = fmax2(1, floor(incr/100)); } while(oldincr > 1 && incr > y*1e-15); return y; } } double qnbinom_mu(double p, double size, double mu, int lower_tail, int log_p) { if (size == ML_POSINF) // limit case: Poisson return(qpois(p, mu, lower_tail, log_p)); /* FIXME! Implement properly!! (not losing accuracy for very large size (prob ~= 1)*/ return qnbinom(p, size, /* prob = */ size/(size+mu), lower_tail, log_p); }