/* * Mathlib : A C Library of Special Functions * Copyright (C) 2000-2018 The R Core Team * Copyright (C) 2002-2018 The R Foundation * Copyright (C) 1998 Ross Ihaka * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, a copy is available at * https://www.R-project.org/Licenses/ * * SYNOPSIS * * #include * double gammafn(double x); * * DESCRIPTION * * This function computes the value of the gamma function. * * NOTES * * This function is a translation into C of a Fortran subroutine * by W. Fullerton of Los Alamos Scientific Laboratory. * (e.g. http://www.netlib.org/slatec/fnlib/gamma.f) * * The accuracy of this routine compares (very) favourably * with those of the Sun Microsystems portable mathematical * library. * * MM specialized the case of n! for n < 50 - for even better precision */ #include "nmath.h" double gammafn(double x) { const static double gamcs[42] = { +.8571195590989331421920062399942e-2, +.4415381324841006757191315771652e-2, +.5685043681599363378632664588789e-1, -.4219835396418560501012500186624e-2, +.1326808181212460220584006796352e-2, -.1893024529798880432523947023886e-3, +.3606925327441245256578082217225e-4, -.6056761904460864218485548290365e-5, +.1055829546302283344731823509093e-5, -.1811967365542384048291855891166e-6, +.3117724964715322277790254593169e-7, -.5354219639019687140874081024347e-8, +.9193275519859588946887786825940e-9, -.1577941280288339761767423273953e-9, +.2707980622934954543266540433089e-10, -.4646818653825730144081661058933e-11, +.7973350192007419656460767175359e-12, -.1368078209830916025799499172309e-12, +.2347319486563800657233471771688e-13, -.4027432614949066932766570534699e-14, +.6910051747372100912138336975257e-15, -.1185584500221992907052387126192e-15, +.2034148542496373955201026051932e-16, -.3490054341717405849274012949108e-17, +.5987993856485305567135051066026e-18, -.1027378057872228074490069778431e-18, +.1762702816060529824942759660748e-19, -.3024320653735306260958772112042e-20, +.5188914660218397839717833550506e-21, -.8902770842456576692449251601066e-22, +.1527474068493342602274596891306e-22, -.2620731256187362900257328332799e-23, +.4496464047830538670331046570666e-24, -.7714712731336877911703901525333e-25, +.1323635453126044036486572714666e-25, -.2270999412942928816702313813333e-26, +.3896418998003991449320816639999e-27, -.6685198115125953327792127999999e-28, +.1146998663140024384347613866666e-28, -.1967938586345134677295103999999e-29, +.3376448816585338090334890666666e-30, -.5793070335782135784625493333333e-31 }; int i, n; double y; double sinpiy, value; #ifdef NOMORE_FOR_THREADS static int ngam = 0; static double xmin = 0, xmax = 0., xsml = 0., dxrel = 0.; /* Initialize machine dependent constants, the first time gamma() is called. FIXME for threads ! */ if (ngam == 0) { ngam = chebyshev_init(gamcs, 42, DBL_EPSILON/20);/*was .1*d1mach(3)*/ gammalims(&xmin, &xmax);/*-> ./gammalims.c */ xsml = exp(fmax2(log(DBL_MIN), -log(DBL_MAX)) + 0.01); /* = exp(.01)*DBL_MIN = 2.247e-308 for IEEE */ dxrel = sqrt(DBL_EPSILON);/*was sqrt(d1mach(4)) */ } #else /* For IEEE double precision DBL_EPSILON = 2^-52 = 2.220446049250313e-16 : * (xmin, xmax) are non-trivial, see ./gammalims.c * xsml = exp(.01)*DBL_MIN * dxrel = sqrt(DBL_EPSILON) = 2 ^ -26 */ # define ngam 22 # define xmin -170.5674972726612 # define xmax 171.61447887182298 # define xsml 2.2474362225598545e-308 # define dxrel 1.490116119384765696e-8 #endif if(ISNAN(x)) return x; /* If the argument is exactly zero or a negative integer * then return NaN. */ if (x == 0 || (x < 0 && x == round(x))) { ML_WARNING(ME_DOMAIN, "gammafn"); return ML_NAN; } y = fabs(x); if (y <= 10) { /* Compute gamma(x) for -10 <= x <= 10 * Reduce the interval and find gamma(1 + y) for 0 <= y < 1 * first of all. */ n = (int) x; if(x < 0) --n; y = x - n;/* n = floor(x) ==> y in [ 0, 1 ) */ --n; value = chebyshev_eval(y * 2 - 1, gamcs, ngam) + .9375; if (n == 0) return value;/* x = 1.dddd = 1+y */ if (n < 0) { /* compute gamma(x) for -10 <= x < 1 */ /* exact 0 or "-n" checked already above */ /* The answer is less than half precision */ /* because x too near a negative integer. */ if (x < -0.5 && fabs(x - (int)(x - 0.5) / x) < dxrel) { ML_WARNING(ME_PRECISION, "gammafn"); } /* The argument is so close to 0 that the result would overflow. */ if (y < xsml) { ML_WARNING(ME_RANGE, "gammafn"); if(x > 0) return ML_POSINF; else return ML_NEGINF; } n = -n; for (i = 0; i < n; i++) { value /= (x + i); } return value; } else { /* gamma(x) for 2 <= x <= 10 */ for (i = 1; i <= n; i++) { value *= (y + i); } return value; } } else { /* gamma(x) for y = |x| > 10. */ if (x > xmax) { /* Overflow */ // No warning: +Inf is the best answer return ML_POSINF; } if (x < xmin) { /* Underflow */ // No warning: 0 is the best answer return 0.; } if(y <= 50 && y == (int)y) { /* compute (n - 1)! */ value = 1.; for (i = 2; i < y; i++) value *= i; } else { /* normal case */ value = exp((y - 0.5) * log(y) - y + M_LN_SQRT_2PI + ((2*y == (int)2*y)? stirlerr(y) : lgammacor(y))); } if (x > 0) return value; if (fabs((x - (int)(x - 0.5))/x) < dxrel){ /* The answer is less than half precision because */ /* the argument is too near a negative integer. */ ML_WARNING(ME_PRECISION, "gammafn"); } sinpiy = sinpi(y); if (sinpiy == 0) { /* Negative integer arg - overflow */ ML_WARNING(ME_RANGE, "gammafn"); return ML_POSINF; } return -M_PI / (y * sinpiy * value); } }