/* * Mathlib : A C Library of Special Functions * Copyright (C) 1998 Ross Ihaka * Copyright (C) 2000-2001 The R Core Team * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, a copy is available at * https://www.R-project.org/Licenses/ * * SYNOPSIS * * #include * double lgammacor(double x); * * DESCRIPTION * * Compute the log gamma correction factor for x >= 10 so that * * log(gamma(x)) = .5*log(2*pi) + (x-.5)*log(x) -x + lgammacor(x) * * [ lgammacor(x) is called Del(x) in other contexts (e.g. dcdflib)] * * NOTES * * This routine is a translation into C of a Fortran subroutine * written by W. Fullerton of Los Alamos Scientific Laboratory. * * SEE ALSO * * Loader(1999)'s stirlerr() {in ./stirlerr.c} is *very* similar in spirit, * is faster and cleaner, but is only defined "fast" for half integers. */ #include "nmath.h" double attribute_hidden lgammacor(double x) { const static double algmcs[15] = { +.1666389480451863247205729650822e+0, -.1384948176067563840732986059135e-4, +.9810825646924729426157171547487e-8, -.1809129475572494194263306266719e-10, +.6221098041892605227126015543416e-13, -.3399615005417721944303330599666e-15, +.2683181998482698748957538846666e-17, -.2868042435334643284144622399999e-19, +.3962837061046434803679306666666e-21, -.6831888753985766870111999999999e-23, +.1429227355942498147573333333333e-24, -.3547598158101070547199999999999e-26, +.1025680058010470912000000000000e-27, -.3401102254316748799999999999999e-29, +.1276642195630062933333333333333e-30 }; double tmp; /* For IEEE double precision DBL_EPSILON = 2^-52 = 2.220446049250313e-16 : * xbig = 2 ^ 26.5 * xmax = DBL_MAX / 48 = 2^1020 / 3 */ #define nalgm 5 #define xbig 94906265.62425156 #define xmax 3.745194030963158e306 if (x < 10) ML_WARN_return_NAN else if (x >= xmax) { ML_WARNING(ME_UNDERFLOW, "lgammacor"); /* allow to underflow below */ } else if (x < xbig) { tmp = 10 / x; return chebyshev_eval(tmp * tmp * 2 - 1, algmcs, nalgm) / x; } return 1 / (x * 12); }