/* * Copyright (C) 2000-2015 The R Core Team * * Algorithm AS 226 Appl. Statist. (1987) Vol. 36, No. 2 * by Russell V. Lenth * Incorporates modification AS R84 from AS Vol. 39, pp311-2, 1990 * and AS R95 from AS Vol. 44, pp551-2, 1995 * by H. Frick and Min Long Lam. * original (C) Royal Statistical Society 1987, 1990, 1995 * * Returns the cumulative probability of x for the non-central * beta distribution with parameters a, b and non-centrality ncp. * * Auxiliary routines required: * lgamma - log-gamma function * pbeta - incomplete-beta function {nowadays: pbeta_raw() -> bratio()} */ #include "nmath.h" #include "dpq.h" LDOUBLE attribute_hidden pnbeta_raw(double x, double o_x, double a, double b, double ncp) { /* o_x == 1 - x but maybe more accurate */ /* change errmax and itrmax if desired; * original (AS 226, R84) had (errmax; itrmax) = (1e-6; 100) */ const static double errmax = 1.0e-9; const int itrmax = 10000; /* 100 is not enough for pf(ncp=200) see PR#11277 */ double a0, lbeta, c, errbd, x0, temp, tmp_c; int ierr; LDOUBLE ans, ax, gx, q, sumq; if (ncp < 0. || a <= 0. || b <= 0.) ML_WARN_return_NAN; if(x < 0. || o_x > 1. || (x == 0. && o_x == 1.)) return 0.; if(x > 1. || o_x < 0. || (x == 1. && o_x == 0.)) return 1.; c = ncp / 2.; /* initialize the series */ x0 = floor(fmax2(c - 7. * sqrt(c), 0.)); a0 = a + x0; lbeta = lgammafn(a0) + lgammafn(b) - lgammafn(a0 + b); /* temp = pbeta_raw(x, a0, b, TRUE, FALSE), but using (x, o_x): */ bratio(a0, b, x, o_x, &temp, &tmp_c, &ierr, FALSE); gx = exp(a0 * log(x) + b * (x < .5 ? log1p(-x) : log(o_x)) - lbeta - log(a0)); if (a0 > a) q = exp(-c + x0 * log(c) - lgammafn(x0 + 1.)); else q = exp(-c); sumq = 1. - q; ans = ax = q * temp; /* recurse over subsequent terms until convergence is achieved */ double j = floor(x0); // x0 could be billions, and is in package EnvStats do { j++; temp -= (double) gx; gx *= x * (a + b + j - 1.) / (a + j); q *= c / j; sumq -= q; ax = temp * q; ans += ax; errbd = (double)((temp - gx) * sumq); } while (errbd > errmax && j < itrmax + x0); if (errbd > errmax) ML_WARNING(ME_PRECISION, "pnbeta"); if (j >= itrmax + x0) ML_WARNING(ME_NOCONV, "pnbeta"); return ans; } double attribute_hidden pnbeta2(double x, double o_x, double a, double b, double ncp, /* o_x == 1 - x but maybe more accurate */ int lower_tail, int log_p) { LDOUBLE ans = pnbeta_raw(x, o_x, a,b, ncp); /* return R_DT_val(ans), but we want to warn about cancellation here */ if (lower_tail) #ifdef HAVE_LONG_DOUBLE return (double) (log_p ? logl(ans) : ans); #else return log_p ? log(ans) : ans; #endif else { if (ans > 1. - 1e-10) ML_WARNING(ME_PRECISION, "pnbeta"); if (ans > 1.0) ans = 1.0; /* Precaution */ #if defined(HAVE_LONG_DOUBLE) && defined(HAVE_LOG1PL) return (double) (log_p ? log1pl(-ans) : (1. - ans)); #else /* include standalone case */ return (double) (log_p ? log1p((double)-ans) : (1. - ans)); #endif } } double pnbeta(double x, double a, double b, double ncp, int lower_tail, int log_p) { #ifdef IEEE_754 if (ISNAN(x) || ISNAN(a) || ISNAN(b) || ISNAN(ncp)) return x + a + b + ncp; #endif R_P_bounds_01(x, 0., 1.); return pnbeta2(x, 1-x, a, b, ncp, lower_tail, log_p); }