/* * Mathlib : A C Library of Special Functions * Copyright (C) 1998 Ross Ihaka * Copyright (C) 2000-2016 The R Core Team * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, a copy is available at * https://www.R-project.org/Licenses/ * * DESCRIPTION * * The quantile function of the Poisson distribution. * * METHOD * * Uses the Cornish-Fisher Expansion to include a skewness * correction to a normal approximation. This gives an * initial value which never seems to be off by more than * 1 or 2. A search is then conducted of values close to * this initial start point. */ #include "nmath.h" #include "dpq.h" static double do_search(double y, double *z, double p, double lambda, double incr) { if(*z >= p) { /* search to the left */ for(;;) { if(y == 0 || (*z = ppois(y - incr, lambda, /*l._t.*/TRUE, /*log_p*/FALSE)) < p) return y; y = fmax2(0, y - incr); } } else { /* search to the right */ for(;;) { y = y + incr; if((*z = ppois(y, lambda, /*l._t.*/TRUE, /*log_p*/FALSE)) >= p) return y; } } } double qpois(double p, double lambda, int lower_tail, int log_p) { double mu, sigma, gamma, z, y; #ifdef IEEE_754 if (ISNAN(p) || ISNAN(lambda)) return p + lambda; #endif if(!R_FINITE(lambda)) ML_WARN_return_NAN; if(lambda < 0) ML_WARN_return_NAN; R_Q_P01_check(p); if(lambda == 0) return 0; if(p == R_DT_0) return 0; if(p == R_DT_1) return ML_POSINF; mu = lambda; sigma = sqrt(lambda); /* gamma = sigma; PR#8058 should be kurtosis which is mu^-0.5 */ gamma = 1.0/sigma; /* Note : "same" code in qpois.c, qbinom.c, qnbinom.c -- * FIXME: This is far from optimal [cancellation for p ~= 1, etc]: */ if(!lower_tail || log_p) { p = R_DT_qIv(p); /* need check again (cancellation!): */ if (p == 0.) return 0; if (p == 1.) return ML_POSINF; } /* temporary hack --- FIXME --- */ if (p + 1.01*DBL_EPSILON >= 1.) return ML_POSINF; /* y := approx.value (Cornish-Fisher expansion) : */ z = qnorm(p, 0., 1., /*lower_tail*/TRUE, /*log_p*/FALSE); y = nearbyint(mu + sigma * (z + gamma * (z*z - 1) / 6)); z = ppois(y, lambda, /*lower_tail*/TRUE, /*log_p*/FALSE); /* fuzz to ensure left continuity; 1 - 1e-7 may lose too much : */ p *= 1 - 64*DBL_EPSILON; /* If the mean is not too large a simple search is OK */ if(lambda < 1e5) return do_search(y, &z, p, lambda, 1); /* Otherwise be a bit cleverer in the search */ { double incr = floor(y * 0.001), oldincr; do { oldincr = incr; y = do_search(y, &z, p, lambda, incr); incr = fmax2(1, floor(incr/100)); } while(oldincr > 1 && incr > lambda*1e-15); return y; } }