extern crate ramp; use std::cmp::Ordering; use ramp::Int; #[derive(Debug,Copy,Clone,PartialEq,Eq)] struct GcdResult { /// Greatest common divisor. gcd: T, /// Coefficients such that: gcd(a, b) = c1*a + c2*b c1: T, c2: T, } /// Calculate greatest common divisor and the corresponding coefficients. fn extended_gcd(a: Int, b: Int) -> GcdResult { // Euclid's extended algorithm let (mut s, mut old_s) = (Int::zero(), Int::one()); let (mut t, mut old_t) = (Int::one(), Int::zero()); let (mut r, mut old_r) = (b, a); let mut tmp = Int::zero(); while r != 0 { let quotient = &old_r / &r; tmp.clone_from(&r); r = &old_r - "ient * r; old_r.clone_from(&tmp); tmp.clone_from(&s); s = &old_s - "ient * s; old_s.clone_from(&tmp); tmp.clone_from(&t); t = &old_t - "ient * t; old_t.clone_from(&tmp); } let _quotients = (t, s); // == (a, b) / gcd GcdResult { gcd: old_r, c1: old_s, c2: old_t } } /// Find the standard representation of a (mod n). fn normalize(a: Int, n: &Int) -> Int { let a = a % n; match a.cmp(&Int::zero()) { Ordering::Less => a + n, _ => a, } } /// Calculate the inverse of a (mod n). fn inverse(a: Int, n: &Int) -> Option { let GcdResult { gcd, c1: c, c2: _ } = extended_gcd(a, n.clone()); if gcd == 1 { Some(normalize(c, n)) } else { None } } /// Calculate base^exp (mod modulus). fn mpow(mut base: Int, mut exp: u32, modulus: &Int) -> Int { let mut result = Int::one(); base = base % modulus; while exp > 0 { if exp % 2 == 1 { result = (result * &base) % modulus; } exp = exp >> 1; base = (base.dsquare()) % modulus; } result } fn main() { let (a, b) = (Int::from(6), Int::from(3)); let GcdResult { gcd, c1, c2 } = extended_gcd(a.clone(), b.clone()); println!("gcd({}, {}) = {}*{} + {}*{} = {}", &a, &b, &c1, &a, &c2, &b, &gcd); println!("7**-1 (mod 10) = {}", inverse(Int::from(7), &Int::from(10)).unwrap()); println!("7**1000 (mod 13) = {}", mpow(Int::from(7), 1000, &Int::from(13))); }