use rand_core::{RngCore, SeedableRng}; use rand_pcg::{Lcg64Xsh32, Pcg32}; #[test] fn test_lcg64xsh32_advancing() { for seed in 0..20 { let mut rng1 = Lcg64Xsh32::seed_from_u64(seed); let mut rng2 = rng1.clone(); for _ in 0..20 { rng1.next_u32(); } rng2.advance(20); assert_eq!(rng1, rng2); } } #[test] fn test_lcg64xsh32_construction() { // Test that various construction techniques produce a working RNG. let seed = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]; let mut rng1 = Lcg64Xsh32::from_seed(seed); assert_eq!(rng1.next_u64(), 1204678643940597513); let mut rng2 = Lcg64Xsh32::from_rng(&mut rng1); assert_eq!(rng2.next_u64(), 12384929573776311845); let mut rng3 = Lcg64Xsh32::seed_from_u64(0); assert_eq!(rng3.next_u64(), 18195738587432868099); // This is the same as Lcg64Xsh32, so we only have a single test: let mut rng4 = Pcg32::seed_from_u64(0); assert_eq!(rng4.next_u64(), 18195738587432868099); } #[test] fn test_lcg64xsh32_reference() { // Numbers copied from official test suite. let mut rng = Lcg64Xsh32::new(42, 54); let mut results = [0u32; 6]; for i in results.iter_mut() { *i = rng.next_u32(); } let expected: [u32; 6] = [ 0xa15c02b7, 0x7b47f409, 0xba1d3330, 0x83d2f293, 0xbfa4784b, 0xcbed606e, ]; assert_eq!(results, expected); } #[cfg(feature = "serde")] #[test] fn test_lcg64xsh32_serde() { use bincode; use std::io::{BufReader, BufWriter}; let mut rng = Lcg64Xsh32::seed_from_u64(0); let buf: Vec = Vec::new(); let mut buf = BufWriter::new(buf); bincode::serialize_into(&mut buf, &rng).expect("Could not serialize"); let buf = buf.into_inner().unwrap(); let mut read = BufReader::new(&buf[..]); let mut deserialized: Lcg64Xsh32 = bincode::deserialize_from(&mut read).expect("Could not deserialize"); for _ in 0..16 { assert_eq!(rng.next_u64(), deserialized.next_u64()); } }